Lie Triple Derivations on von Neumann Algebras

被引:12
|
作者
Liu, Lei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Derivations; Lie triple derivations; von Neumann algebras; CHARACTERIZING HOMOMORPHISMS; OPERATOR-ALGEBRAS; NEST-ALGEBRAS; IDEMPOTENTS;
D O I
10.1007/s11401-018-0098-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map delta : A -> A satisfies delta([[a, b], c]) = [[delta(a), b], c]+[[a, delta(b)], c]+[[a, b], delta(c)] for any a, b, c is an element of A with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f : A -> Z(A) vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that delta(a) = d(a) + f(a) for any a is an element of A.
引用
收藏
页码:817 / 828
页数:12
相关论文
共 50 条
  • [41] Lie triple derivations of triangular algebras
    Xiao, Zhankui
    Wei, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (05) : 1234 - 1249
  • [42] Lie Triple Derivations of CSL Algebras
    Yu, Weiyan
    Zhang, Jianhua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (06) : 2118 - 2127
  • [43] Lie triple derivations of incidence algebras
    Wang, Danni
    Xiao, Zhankui
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 1841 - 1852
  • [44] TRIPLE DERIVATIONS OF PERFECT LIE ALGEBRAS
    Zhou, Jianhua
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 1647 - 1654
  • [45] Lie triple derivations of TUHF algebras
    Ji, PS
    Wang, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 : 399 - 408
  • [46] Nonlinear 2-local Lie n-derivations of von Neumann algebras
    Zhao, Xingpeng
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1457 - 1465
  • [47] Characterization of Lie-Type Higher Derivations of von Neumann Algebras with Local Actions
    Kawa, Ab Hamid
    Alsuraiheed, Turki
    Hasan, S. N.
    Ali, Shakir
    Wani, Bilal Ahmad
    MATHEMATICS, 2023, 11 (23)
  • [48] Ultraweak Continuity of σ-derivations on von Neumann Algebras
    Mirzavaziri, Madjid
    Moslehian, Mohammad Sal
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2009, 12 (02) : 109 - 115
  • [49] Derivations of Murray-von Neumann algebras
    Ber, Aleksey
    Kudaybergenov, Karimbergen
    Sukochev, Fedor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 283 - 301
  • [50] Derivations on Murray-von Neumann algebras
    Ber, A. F.
    Kudaybergenov, K. K.
    Sykochev, F. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (05) : 950 - 952