Lie Triple Derivations on von Neumann Algebras

被引:12
|
作者
Liu, Lei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Derivations; Lie triple derivations; von Neumann algebras; CHARACTERIZING HOMOMORPHISMS; OPERATOR-ALGEBRAS; NEST-ALGEBRAS; IDEMPOTENTS;
D O I
10.1007/s11401-018-0098-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map delta : A -> A satisfies delta([[a, b], c]) = [[delta(a), b], c]+[[a, delta(b)], c]+[[a, b], delta(c)] for any a, b, c is an element of A with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f : A -> Z(A) vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that delta(a) = d(a) + f(a) for any a is an element of A.
引用
收藏
页码:817 / 828
页数:12
相关论文
共 50 条