Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering

被引:92
作者
Fares, Mohammad M. [1 ,2 ,3 ]
Sani, Ehsan Shirzaei [3 ,4 ]
Portillo Lara, Roberto [3 ,5 ]
Oliveira, Rhayza B. [3 ]
Khademhosseini, Ali [1 ,2 ,4 ,6 ,7 ,8 ,9 ]
Annabi, Nasim [1 ,2 ,3 ,4 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Div Engn Med, Biomat Innovat Res Ctr, Boston, MA 02139 USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
[4] Univ Calif Los Angeles, Chem & Biomol Engn Dept, Los Angeles, CA 90095 USA
[5] Tecnol Monterrey, Escuela Ingn & Ciencias, Zapopan 45019, JAL, Mexico
[6] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
IN-VITRO; HYBRID HYDROGELS; MECHANICAL-PROPERTIES; POLYMER NETWORK; DRUG-DELIVERY; SCAFFOLDS; COMPOSITE; CELLS; BIOCOMPATIBILITY; ADHESIVE;
D O I
10.1039/c8bm00474a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The design of new hydrogel-based biomaterials with tunable physical and biological properties is essential for the advancement of applications related to tissue engineering and regenerative medicine. For instance, interpenetrating polymer network (IPN) and semi-IPN hydrogels have been widely explored to engineer functional tissues due to their characteristic microstructural and mechanical properties. Here, we engineered IPN and semi-IPN hydrogels comprised of a tough pectin grafted polycaprolactone (pectin-g-PCL) component to provide mechanical stability, and a highly cytocompatible gelatin methacryloyl (GelMA) component to support cellular growth and proliferation. IPN hydrogels were formed by calcium ion (Ca2+)-crosslinking of pectin-g-PCL chains, followed by photocrosslinking of the GelMA precursor. Conversely, semi-IPN networks were formed by photocrosslinking of the pectin-g-PCL and GelMA mixture, in the absence of Ca2+ crosslinking. IPN and semi-IPN hydrogels synthesized with varying ratios of pectin-g-PCL to GelMA, with and without Ca2+-crosslinking, exhibited a broad range of mechanical properties. For semi-IPN hydrogels, the aggregation of microcrystalline cores led to formation of hydrogels with compressive moduli ranging from 3.1 to 10.4 kPa. For IPN hydrogels, the mechanistic optimization of pectin-g-PCL, GelMA, and Ca2+ concentrations resulted in hydrogels with comparatively higher compressive modulus, in the range of 39 kPa-5029 kPa. Our results also showed that IPN hydrogels were cytocompatible in vitro and could support the growth of three-dimensionally (3D) encapsulated MC3T3-E1 preosteoblasts in vitro. The simplicity, technical feasibility, low cost, tunable mechanical properties, and cytocompatibility of the engineered semi-IPN and IPN hydrogels highlight their potential for different tissue engineering and biomedical applications.
引用
收藏
页码:2938 / 2950
页数:13
相关论文
共 79 条
[1]   Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication [J].
Ahadian, Samad ;
Ramon-Azcon, Javier ;
Estili, Mehdi ;
Liang, Xiaobin ;
Ostrovidov, Serge ;
Shiku, Hitoshi ;
Ramalingam, Murugan ;
Nakajima, Ken ;
Sakka, Yoshio ;
Bae, Hojae ;
Matsue, Tomokazu ;
Khademhosseini, Ali .
SCIENTIFIC REPORTS, 2014, 4
[2]   Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007) [J].
Aleman, J. ;
Chadwick, A. V. ;
He, J. ;
Hess, M. ;
Horie, K. ;
Jones, R. G. ;
Kratochvil, P. ;
Meisel, I. ;
Mita, I. ;
Moad, G. ;
Penczek, S. ;
Stepto, R. F. T. .
PURE AND APPLIED CHEMISTRY, 2007, 79 (10) :1801-1827
[3]   Controlled release of therapeutics using interpenetrating polymeric networks [J].
Aminabhavi, Tejraj M. ;
Nadagouda, Mallikarjuna N. ;
More, Uttam A. ;
Joshi, Shrinivas D. ;
Kulkarni, Venkatrao H. ;
Noolvi, Malleshappa N. ;
Kulkarni, Padmakar V. .
EXPERT OPINION ON DRUG DELIVERY, 2015, 12 (04) :669-688
[4]   Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF [J].
Amirian, Jhaleh ;
Nguyen Thuy Ba Linh ;
Min, Young Ki ;
Lee, Byong-Taek .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 76 :10-24
[5]   Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing [J].
Annabi, Nasim ;
Rana, Devyesh ;
Sani, Ehsan Shirzaei ;
Portillo-Lara, Roberto ;
Gifford, Jessie L. ;
Fares, Mohammad M. ;
Mithieux, Suzanne M. ;
Weiss, Anthony S. .
BIOMATERIALS, 2017, 139 :229-243
[6]   Synthesis of Highly Monodispersed, Stable, and Spherical NZVI of 20-30 nm on Filter Paper for the Removal of Phosphate from Wastewater: Batch and Column Study [J].
Arshadi, M. ;
Abdolmaleki, M. K. ;
Eskandarloo, H. ;
Azizi, M. ;
Abbaspourrad, A. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (09) :11662-11676
[7]   Versatile Pectin Grafted Poly (N-isopropylacrylamide); Modulated Targeted Drug Release [J].
Assaf, Shereen M. ;
Abul-Haija, Yousef M. ;
Fares, Mohammad M. .
JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2011, 48 (06) :493-502
[8]   A highly adhesive and naturally derived sealant [J].
Assmann, Alexander ;
Vegh, Andrea ;
Ghasemi-Rad, Mohammad ;
Bagherifard, Sara ;
Cheng, George ;
Sani, Ehsan Shirzaei ;
Ruiz-Esparza, Guillermo U. ;
Noshadi, Iman ;
Lassaletta, Antonio D. ;
Gangadharan, Sidhu ;
Tamayol, Ali ;
Khademhosseini, Ali ;
Annabi, Nasim .
BIOMATERIALS, 2017, 140 :115-127
[9]  
Azizi M, 2018, FOOD CHEM, V246, P448, DOI [10.1016/j.foodchem.2017.12, 10.1016/j.foodchem.2017.12.009]
[10]  
Breuls Roel G M, 2008, Open Orthop J, V2, P103, DOI 10.2174/1874325000802010103