Clarke subgradients of stratifiable functions

被引:285
作者
Bolte, Jerome
Daniilidis, Aris
Lewis, Adrian
Shiota, Masahiro
机构
[1] Univ Paris 06, Equipe Combinatoire & Optimisat, UMR 7090, F-75252 Paris, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[3] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
[4] Nagoya Univ, Dept Math, Nagoya, Aichi 4648602, Japan
关键词
clarke subgradient; Lojasiewicz inequality; critical point; nonsmooth analysis; Whitney stratification;
D O I
10.1137/060670080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the following result: If the graph of a lower semicontinuous real extended valued function f : R-n -> R boolean OR{+infinity} admits a Whitney stratification ( so in particular if f is a semialgebraic function), then the norm of the gradient of f at x epsilon dom f relative to the stratum containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we obtain a Morse - Sard type of theorem as well as a nonsmooth extension of the Kurdyka - Lojasiewicz nequality for functions definable in an arbitrary o- minimal structure. It is worthwhile pointing outthat, even in a smooth setting, this last result generalizes the one given in [ K. Kurdyka, Ann. Inst. Fourier ( Grenoble), 48 ( 1998), pp. 769 - 783] by removing the boundedness assumption on the domain of the function.
引用
收藏
页码:556 / 572
页数:17
相关论文
共 35 条
[1]   Convergence of the iterates of descent methods for analytic cost functions [J].
Absil, PA ;
Mahony, R ;
Andrews, B .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :531-547
[2]  
BOLTE J, IN PRESS MATH PROGRA
[3]  
Bolte J., 2005, ANN POL MATH, V87, P13
[4]   A robust gradient sampling algorithm for nonsmooth, nonconvex optimization [J].
Burke, JV ;
Lewis, AS ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :751-779
[5]  
Clarke F. H., 1998, NONSMOOTH ANAL CONTR, V178
[6]  
CLARKE FH, 1990, APPL MATH, V5, P308
[7]  
COSTE M, 1999, INTRO OMINIMAL GEOME
[8]  
DACUNTO D, 2001, THESIS U SAVOIE CHAM
[9]   Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems [J].
Daniilidis, Aris ;
Hare, Warren ;
Malick, Jerome .
OPTIMIZATION, 2006, 55 (5-6) :481-503
[10]  
Denkowska Z., 1987, B POL ACAD SCI MATH, V35, P401