Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering

被引:55
作者
Rudolph, Martin [1 ]
Brenning, Nils [2 ,3 ]
Raadu, Michael A. [2 ]
Hajihoseini, Hamidreza [4 ]
Gudmundsson, Jon Tomas [2 ,4 ]
Anders, Andre [1 ,5 ]
Lundin, Daniel [3 ]
机构
[1] Leibniz Inst Surface Engn IOM, Permoserstr 15, D-04318 Leipzig, Germany
[2] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Space & Plasma Phys, SE-10044 Stockholm, Sweden
[3] Linkoping Univ, IFM Mat Phys, Plasma & Coatings Phys Div, SE-58183 Linkoping, Sweden
[4] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
[5] Univ Leipzig, Felix Bloch Inst Solid State Phys, Linnestr 5, D-04103 Leipzig, Germany
基金
瑞典研究理事会;
关键词
high power impulse magnetron sputtering; deposition rate; ionized flux fraction; pulse length; ATOMS; ENHANCEMENT; ENERGIES; HIPIMS;
D O I
10.1088/1361-6595/ab8175
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapour deposition technique. While HiPIMS provides a high flux of metal ions to the substrate, the disadvantage is a reduced deposition rate compared to direct current magnetron sputtering (dcMS) at equal average power. This is mainly due to the high target back-attraction probability of the metal ions with typical values in the range 70%-90% during the pulse. In this work, we investigate how to reduce this effect by quantifying the contribution of the metal ion flux after each HiPIMS pulse, a period also known as afterglow. Without a negative potential on the target at this stage of the HiPIMS process, the back-attracting electric field disappears allowing remaining ions to escape the ionization region. In order to analyze the fate of the film-forming ions, we extend the time-dependent ionization region model (IRM) by adding consideration of an afterglow. This approach allows to distinguish between fluxes from the ionization region during the pulse and during the afterglow. We show that by shortening the pulse length of a titanium HiPIMS discharge, the contribution to the outward flux of film-forming species from the afterglow increases significantly. The IRM predicts a gain in deposition rate of 46% and 47% for two discharges with different peak discharge currents, when using 40 mu s compared to 100 mu s-long pulses at the same average power. This is without compromising the ionized flux fraction that remains constant for the range of pulse lengths investigated here.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Dynamic of the growth flux at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of titanium [J].
Breilmann, W. ;
Maszl, C. ;
Benedikt, J. ;
von Keudell, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (48)
[2]   Ion density evolution in a high-power sputtering discharge with bipolar pulsing [J].
Britun, N. ;
Michiels, M. ;
Godfroid, T. ;
Snyders, R. .
APPLIED PHYSICS LETTERS, 2018, 112 (23)
[3]   On three different ways to quantify the degree of ionization in sputtering magnetrons [J].
Butler, Alexandre ;
Brenning, Nils ;
Raadu, Michael A. ;
Gudmundsson, Jon Tomas ;
Minea, Tiberiu ;
Lundin, Daniel .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (10)
[4]   Target material pathways model for high power pulsed magnetron sputtering [J].
Christie, DJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2005, 23 (02) :330-335
[5]   Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion [J].
Ehiasarian, A. P. ;
Wen, J. G. ;
Petrov, I. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (05)
[6]  
Ganciu-Petcu M., 2011, U.S. Patent, Patent No. [7,927,466, 7927466]
[7]   High power impulse magnetron sputtering discharge [J].
Gudmundsson, J. T. ;
Brenning, N. ;
Lundin, D. ;
Helmersson, U. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (03)
[8]  
Hajihoseini H., 2019, Plasma, V2, P201, DOI [10.3390/plasma2020015, DOI 10.3390/PLASMA2020015]
[9]   Time evolution of ion energies in HIPIMS of chromium plasma discharge [J].
Hecimovic, A. ;
Ehiasarian, A. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (13)
[10]   Compression and strong rarefaction in high power impulse magnetron sputtering discharges [J].
Horwat, David ;
Anders, Andre .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)