Can we refer to Hamilton's equations for an oscillator with friction?

被引:4
作者
Shalashov, A. G. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Ul Ulyanova 46, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhni Novgorod, Prosp Gagarina 23, Nizhnii Novgorod 603950, Russia
关键词
classical mechanics; Lagrange's equations; Hamilton's equations; energy integral; conservative and dissipative systems; QUANTUM-MECHANICS; DISSIPATION; SYSTEMS;
D O I
10.3367/UFNe.2017.12.038273
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A formal possibility of describing a one-dimensional dissipative problem (sic) = f(x, (x)over dot) with completely conservative Lagrange's or Hamilton's equations is discussed. A reference case of a harmonic oscillator with linear friction is considered in detail.
引用
收藏
页码:1082 / 1088
页数:7
相关论文
共 36 条
[1]  
Aizerman M A, 2005, KLASSICHESKAYA MEKHA
[2]  
AIZERMAN MA, 1980, KLASSICHESKAYA MEKHA
[3]  
Andronov AA, 1987, Theory of Oscillators
[4]   DISSIPATIVE QUANTUM-SYSTEMS WITH A POTENTIAL BARRIER - GENERAL-THEORY AND THE PARABOLIC BARRIER [J].
ANKERHOLD, J ;
GRABERT, H ;
INGOLD, GL .
PHYSICAL REVIEW E, 1995, 51 (05) :4267-4281
[5]  
Arnold V. I., 1997, MATH METHODS CLASSIC
[6]   On dissipative systems and related variational principles [J].
Bateman, H .
PHYSICAL REVIEW, 1931, 38 (04) :815-819
[7]   INFLUENCE OF DISSIPATION ON QUANTUM TUNNELING IN MACROSCOPIC SYSTEMS [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICAL REVIEW LETTERS, 1981, 46 (04) :211-214
[8]  
Caldirola P., 1941, Il Nuovo Cimento, VI8, P393, DOI [10.1007/BF02960144, DOI 10.1007/BF02960144]
[9]   QUANTIZATION OF LINEARLY DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICAL REVIEW A, 1977, 16 (05) :2126-2134
[10]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112