A steady-state capturing method for hyperbolic systems with geometrical source terms

被引:153
作者
Jin, S [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 04期
关键词
hyperbolic systems; source terms; steady state solution; shallow water equations; shock capturing methods;
D O I
10.1051/m2an:2001130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple numerical method for capturing the steady state solution of hyperbolic systems with geometrical source terms. We use the interface value, rather than the cell-averages, for the source terms that balance the nonlinear convection at the cell interface, allowing the numerical capturing of the steady state with a formal high order accuracy. This method applies to Godunov or Roe type upwind methods but requires no modification of the Riemann solver. Numerical experiments on scalar conservation laws and the one dimensional shallow water equations show much better resolution of the steady state than the conventional method, with almost no new numerical complexity.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 18 条
[1]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[2]  
BOTCHORISHVILI R, IN PRESS MATH COMP
[3]  
Chinnayya A, 1999, NEW GEN RIEMANN SOLV
[4]  
GALLOUET T, 2001, IN PRESS AIAA J
[5]  
Godunov SK., 1959, MAT SBORNIK, V89, P271
[6]  
Gosse L, 1996, CR ACAD SCI I-MATH, V323, P543
[7]   A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms [J].
Gosse, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (9-10) :135-159
[8]  
GOSSE L, IN PRESS WELL BALANC
[9]   Analysis and approximation of conservation laws with source terms [J].
Greenberg, JM ;
Leroux, AY ;
Baraille, R ;
Noussair, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1980-2007
[10]   A well-balanced scheme for the numerical processing of source terms in hyperbolic equations [J].
Greenberg, JM ;
Leroux, AY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :1-16