Toward a classification of compact complex homogeneous spaces

被引:6
作者
Guan, D [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
homogeneous spaces; product; fiber bundles; complex manifolds; parallelizable manifolds; discrete subgroups; classifications;
D O I
10.1016/j.jalgebra.2003.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove some results on the classification of compact complex homogeneous spaces. We first consider the case of a parallelizable space M = G/Gamma, where G is a complex connected Lie group and Gamma is a discrete cocompact subgroup of G. Using a generalization of results in [M. Otte, J. Potters, Manuscripta Math. 10 (1973) 117-127; D. Guan, Trans. Amer. Math. Soc. 354 (2002) 4493-4504, see also Electron. Res. Announc. Amer. Math. Soc. 3 (1997) 90], it will be shown that, up to a finite covering, G/Gamma is a torus bundle over the product of two such quotients, one where G is semisimple, the other where the simple factors of the Levi subgroups of G are all of type A(l). In the general case of compact complex homogeneous spaces, there is a similar decomposition into three types of building blocks. (C) 2004, Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 59
页数:27
相关论文
共 34 条
[1]  
AKHIEZER D, 1983, SOOBSHCH AKAD NAUK G, V110, P469
[2]  
[Anonymous], 1972, GRAD TEXTS MATH
[4]   UBER KOMPAKTE HOMOGENE KAHLERSCHE MANNIGFALTIGKEITEN [J].
BOREL, A ;
REMMERT, R .
MATHEMATISCHE ANNALEN, 1962, 145 (05) :429-439
[5]  
BOURBAKI N, 1958, ALGEBRA, V2, pCH8
[6]  
BOURBAKI N, 1981, ALGEBRA, V2, pCH4
[7]  
CHERNOUSOV VI, 1989, DOKL AKAD NAUK SSSR+, V306, P1059
[8]  
DORFMEISTER J, 1991, GEOMETRIAE DEDICATA, V39, P321
[9]   PSEUDO-KAHLERIAN HOMOGENEOUS SPACES ADMITTING A REDUCTIVE TRANSITIVE GROUP OF AUTOMORPHISMS [J].
DORFMEISTER, J ;
GUAN, ZD .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :89-100
[10]   THE FUNDAMENTAL CONJECTURE FOR HOMOGENEOUS KAHLER-MANIFOLDS [J].
DORFMEISTER, J ;
NAKAJIMA, K .
ACTA MATHEMATICA, 1988, 161 (1-2) :23-70