p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

被引:206
作者
Fidkowski, KJ [1 ]
Oliver, TA [1 ]
Lu, J [1 ]
Darmofal, DL [1 ]
机构
[1] MIT, Aerosp Computat Design Lab, Cambridge, MA 02139 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/j.jcp.2005.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier-Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection-diffusion equation. Fourier analysis of the two-level p-multigrid algorithm for convection-diffusion shows that element line Jacobi presents a significant improvement over element Jacobi especially for high Reynolds number flows and stretched grids. Results from inviscid and viscous test cases demonstrate optimal h(p + 1) order of accuracy as well as p-independent multigrid convergence rates, at least up to p = 3. In addition, for the smooth problems considered, p-refinement outperforms h-refinement in terms of the time required to reach a desired high accuracy level. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:92 / 113
页数:22
相关论文
共 31 条
[1]  
ALLMARAS SR, 1995, 951651CP AIAA
[2]   AN IMPLICIT UPWIND ALGORITHM FOR COMPUTING TURBULENT FLOWS ON UNSTRUCTURED GRIDS [J].
ANDERSON, WK ;
BONHAUS, DL .
COMPUTERS & FLUIDS, 1994, 23 (01) :1-21
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]  
Bassi F, 2000, LECT NOTES COMP SCI, V11, P197
[6]   High-order accurate discontinuous finite element solution of the 2D Euler equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) :251-285
[7]  
BASSI F, 2002, 2 INT C COMP FLUID D
[8]  
BRANDT A, 1982, GUIDE MULTIGRID DEV
[9]  
Brenner S. C., 2007, Texts Appl. Math., V15
[10]  
Brezzi F, 2000, NUMER METH PART D E, V16, P365, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO