Molecular interactions from the density functional theory for chemical reactivity: Interaction chemical potential, hardness, and reactivity principles

被引:28
作者
Miranda-Quintana, Ramon Alain [1 ,2 ]
Heidar-Zadeh, Farnaz [3 ]
Fias, Stijn [4 ]
Chapman, Allison E. A. [4 ]
Liu, Shubin [5 ]
Morell, Christophe [6 ]
Gomez, Tatiana [7 ]
Cardenas, Carlos [8 ,9 ]
Ayers, Paul W. [4 ]
机构
[1] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
[2] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
[3] Queens Univ, Dept Chem, Kingston, ON, Canada
[4] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON, Canada
[5] Univ N Carolina, Res Comp Ctr, Chapel Hill, NC USA
[6] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Sci Analyt, UMR CNRS 5280, Villeurbanne, France
[7] Univ Autonoma Chile, Inst Appl Chem Sci, Fac Engn, Theoret & Computat Chem Ctr, Santiago, Chile
[8] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile
[9] CEDENNA Ctr desarrollo Nanociencias & Nanotecnol, Santiago, Chile
来源
FRONTIERS IN CHEMISTRY | 2022年 / 10卷
基金
加拿大自然科学与工程研究理事会;
关键词
DFT-density functional theory; chemical reactivity; HSAB (hard-soft-acid-base); concept; chemical potential; variational principle; ELECTRONEGATIVITY EQUALIZATION METHOD; MINIMUM ELECTROPHILICITY PRINCIPLE; FRONTIER-ELECTRON THEORY; WOODWARD-HOFFMANN RULES; MAXIMUM HARDNESS; SOFT ACIDS; FUKUI FUNCTION; VARIATIONAL-PRINCIPLES; POLARIZABILITY PRINCIPLES; ABSOLUTE HARDNESS;
D O I
10.3389/fchem.2022.929464
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the first paper of this series, the authors derived an expression for the interaction energy between two reagents in terms of the chemical reactivity indicators that can be derived from density functional perturbation theory. While negative interaction energies can explain reactivity, reactivity is often more simply explained using the "|d mu| big is good " rule or the maximum hardness principle. Expressions for the change in chemical potential (mu) and hardness when two reagents interact are derived. A partial justification for the maximum hardness principle is that the terms that appear in the interaction energy expression often reappear in the expression for the interaction hardness, but with opposite sign.
引用
收藏
页数:12
相关论文
共 172 条
[1]   Perturbed reactivity descriptors: the chemical hardness [J].
Alain Miranda-Quintana, Raman .
THEORETICAL CHEMISTRY ACCOUNTS, 2017, 136 (07)
[2]   Note: The minimum electrophilicity and the hard/soft acid/base principles [J].
Alain Miranda-Quintana, Ramon .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (04)
[3]   Systematic treatment of spin-reactivity indicators in conceptual density functional theory [J].
Alain Miranda-Quintana, Ramon ;
Ayers, Paul W. .
THEORETICAL CHEMISTRY ACCOUNTS, 2016, 135 (10) :1-18
[4]   Electronegativity and redox reactions [J].
Alain Miranda-Quintana, Ramon ;
Martinez Gonzaleza, Marco ;
Ayers, Paul W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (32) :22235-22243
[5]   Interpolation of property-values between electron numbers is inconsistent with ensemble averaging [J].
Alain Miranda-Quintana, Ramon ;
Ayers, Paul W. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (24)
[6]   Fractional electron number, temperature, and perturbations in chemical reactions [J].
Alain Miranda-Quintana, Ramon ;
Ayers, Paul W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (22) :15070-15080
[7]   Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 1. Theory and derivation of a general-purpose reactivity indicator [J].
Anderson, James S. M. ;
Melin, Junia ;
Ayers, Paul W. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (02) :358-374
[8]   Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails [J].
Anderson, James S. M. ;
Melin, Junia ;
Ayers, Paul W. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (02) :375-389
[9]  
[Anonymous], 2012, Modern Charge-Density Analysis
[10]  
Ayers P.W., 2022, Conceptual Density Functional Theory, P263, DOI [10.1002/9783527829941.ch14, DOI 10.1002/9783527829941.CH14]