Enhancing Hyperspectral Endmember Extraction Using Clustering and Oversegmentation-Based Preprocessing

被引:20
作者
Kowkabi, Fatemeh [1 ]
Ghassemian, Hassan [2 ]
Keshavarz, Ahmad [3 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Elect & Comp Engn, Tehran 1477893855, Iran
[2] Tarbiat Modares Univ, Fac Elect & Comp Engn, Tehran 14155194, Iran
[3] Persian Gulf Univ, Dept Elect Engn, Scholar Engn, Bushehr 75168, Iran
关键词
Cluster; endmember; oversegmentation; preprocessing; spatial; spectral; unmixing; ALGORITHM; INFORMATION;
D O I
10.1109/JSTARS.2016.2539286
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral mixture analysis (SMA) is an effective tool in recognition of unique spectral signatures of materials called endmembers and estimating their percentage of existence (abundance fractions). Most approaches designed in endmember extraction process are established by applying the spectral information of the dataset and, thus, tend to neglect the existing spatial correlation between adjacent pixels. Although several preprocessing modules have been developed by incorporating both spatial and spectral properties prior to spectral-based endmember extraction algorithms (EEs), they still encounter several challenges. Hence, in this paper, we propose an appropriate clustering and oversegmentation-based preprocessing (COPP) by greatly benefiting from the integration of spatial and spectral information. Moreover, a novel top-down oversegmentation (TDOS) algorithm is developed which can recognize small oversegments with high spatial correlation. Our scheme removes oversegments located at spatial border of cluster regions. Average spectral vectors of determined spatially homogenous oversegments are considered so that their spectral purity scores are calculated. COPP identifies spatially homogenous zones with the greatest spectral purity scores. Pixels of these regions are more likely to be adopted as endmembers by means of subsequent EEs. COPP can take advantage of degrading local spectral variability and noise power. The main contribution of this paper is the enhanced computational performance of EE as well as the precise reconstruction of the original hyperspectral scene besides its appropriate recognition of endmembers' spectral signatures. The effectiveness of our design and its validation are appraised with the state-of-the-art strategies on a synthetic and AVIRIS real hyperspectral datasets.
引用
收藏
页码:2400 / 2413
页数:14
相关论文
共 35 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Alizadeh H., 2012, 2012 20th Iranian Conference on Electrical Engineering (ICEE 2012), P1523, DOI 10.1109/IranianCEE.2012.6292600
[3]   Semi-Supervised Kernel Mean Shift Clustering [J].
Anand, Saket ;
Mittal, Sushil ;
Tuzel, Oncel ;
Meer, Peter .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (06) :1201-1215
[4]  
[Anonymous], 2006, REMOTE SENSING DIGIT
[5]  
[Anonymous], 1995, 5 ANN JPL AIRB EARTH
[6]  
[Anonymous], P IEEE INT GEOSC REM
[7]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[8]   A VARIABLE SPLITTING AUGMENTED LAGRANGIAN APPROACH TO LINEAR SPECTRAL UNMIXING [J].
Bioucas-Dias, Jose M. .
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, :1-4
[9]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[10]   A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing [J].
Chan, Tsung-Han ;
Chi, Chong-Yung ;
Huang, Yu-Min ;
Ma, Wing-Kin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) :4418-4432