Advancement in porous adsorbents for post-combustion CO2 capture

被引:159
作者
Modak, Arindam [1 ]
Jana, Subhra [1 ,2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Tech Res Ctr, Block JD,Sect 3, Kolkata 700106, India
[2] SN Bose Natl Ctr Basic Sci, Dept Chem Biol & Macromol Sci, Block JD,Sect 3, Kolkata 700106, India
关键词
Metal-organic frameworks (MOFs); Zeolitic imidazolate frameworks (ZIF); Porous organic polymers (POPs); Covalent organic frameworks (COFs); Functional oxides; CO2; capture; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE CAPTURE; ZEOLITIC IMIDAZOLATE FRAMEWORKS; PERIODIC MESOPOROUS ORGANOSILICA; CONJUGATED MICROPOROUS POLYMERS; TRIAZINE-BASED FRAMEWORKS; HIGH THERMAL-STABILITY; GAS-STORAGE; ADSORPTION PROPERTIES; AROMATIC FRAMEWORKS;
D O I
10.1016/j.micromeso.2018.09.018
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
One of the foremost environmental concerns of our age is the growing concentration of atmospheric CO2 owing to the fossil fuel, power plants, chemical processing and deforestation. High CO2 level in atmosphere induces global warming which is considered as one of the major long lasting problems in the twenty-first century and thus intensive efforts are necessary to curb CO2 from entering into carbon cycle. To address this issue, several promising porous adsorbents are developed to partially mitigate the global climate problems. With increasing substantial interest on high surface area metal-organic frameworks (MOFs), porous organic polymers (POPs), covalent organic frameworks (COFs) and nanoporous oxides, we believe, they could be promising for carbon capture due to their high porosity, presence of ultra-small pores, structural diversity, high stability and excellent recyclability. This review highlights the recent progresses on MOFs, POPs, COFs and mesoporous oxides as CO2 adsorbent and illustrates their CO2 separation selectivity and enthalpy of interaction etc. Finally, we conclude with the viewpoint on the future developments in the context of promising adsorbents for CO2 capture, followed by its transformation to value added products and the potential drawbacks which are associated with them.
引用
收藏
页码:107 / 132
页数:26
相关论文
共 209 条
[1]   Tuning MOF CO2 Adsorption Properties via Cation Exchange [J].
An, Jihyun ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5578-+
[2]   High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (01) :38-+
[3]   Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture [J].
Arab, Pezhman ;
Rabbani, Mohammad Gulam ;
Sekizkardes, Ali Kemal ;
Islamoglu, Timur ;
El-Kaderi, Hani M. .
CHEMISTRY OF MATERIALS, 2014, 26 (03) :1385-1392
[4]   Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide [J].
Arstad, Bjornar ;
Fjellvag, Helmer ;
Kongshaug, Kjell Ove ;
Swang, Ole ;
Blom, Richard .
ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2008, 14 (06) :755-762
[5]   Molecular Simulations for Adsorptive Separation of CO2/CH4 Mixture in Metal-Exposed, Catenated, and Charged Metal-Organic Frameworks [J].
Babarao, Ravichandar ;
Jiang, Jianwen ;
Sandler, Stanley I. .
LANGMUIR, 2009, 25 (09) :5239-5247
[6]   Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :139-143
[7]   Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J].
Bae, Youn-Sang ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) :2131-2134
[8]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[9]   Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework [J].
Barcia, Patrick S. ;
Bastin, Laurent ;
Hurtado, Eric J. ;
Silva, Jose A. C. ;
Rodrigues, Alirio E. ;
Chen, Banglin .
SEPARATION SCIENCE AND TECHNOLOGY, 2008, 43 (13) :3494-3521
[10]  
Batten SR, 1998, ANGEW CHEM INT EDIT, V37, P1460, DOI 10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO