A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

被引:45
作者
Ke, Xinyou [1 ,2 ]
Alexander, J. Iwan D. [1 ,3 ]
Prahl, Joseph M. [1 ]
Savinell, Robert F. [2 ,3 ]
机构
[1] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Fluid Mech Lab, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Chem Engn, Electrochem Engn & Energy Lab, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Great Lakes Energy Inst, Cleveland, OH 44106 USA
关键词
Analytical solution; Volumetric flow rate; Limiting current density; Thin carbon fiber paper electrode; Zero-gap" vanadium flow battery architecture; DENSITY;
D O I
10.1016/j.jpowsour.2015.04.138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s(-1), the analytical maximum current density is estimated to be 377 mA cm(-2), which compares favorably with experimental result reported by others of similar to 400 mA cm(-2). (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 313
页数:6
相关论文
共 9 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]   Polarization curve analysis of all-vanadium redox flow batteries [J].
Aaron, Doug ;
Tang, Zhijiang ;
Papandrew, Alexander B. ;
Zawodzinski, Thomas A. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (10) :1175-1182
[3]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[4]  
Ke X., 2014, THESIS CASE W RESERV
[5]   Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel [J].
Ke, Xinyou ;
Alexander, J. Iwan D. ;
Prahl, Joseph M. ;
Savinell, Robert F. .
JOURNAL OF POWER SOURCES, 2014, 270 :646-657
[6]   Ex-situ experimental studies on serpentine flow field design for redox flow battery systems [J].
Latha, T. Jyothi ;
Jayanti, S. .
JOURNAL OF POWER SOURCES, 2014, 248 :140-146
[7]   Laser-perforated carbon paper electrodes for improved mass-transport in high power density vanadium redox flow batteries [J].
Mayrhuber, I. ;
Dennison, C. R. ;
Kalra, V. ;
Kumbur, E. C. .
JOURNAL OF POWER SOURCES, 2014, 260 :251-258
[8]  
Tang Z., 2013, THESIS U TENNESSEE K
[9]   Numerical investigations of flow field designs for vanadium redox flow batteries [J].
Xu, Q. ;
Zhao, T. S. ;
Leung, P. K. .
APPLIED ENERGY, 2013, 105 :47-56