One point quadrature shell elements for sheet metal forming analysis

被引:14
作者
Cardoso, RPR [1 ]
Yoon, JW [1 ]
机构
[1] ALCOA, Ctr Tech, Alcoa Ctr, PA 15069 USA
关键词
D O I
10.1007/BF02736172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical simulation of sheet metal forming processes is overviewed in this work. Accurate and efficient elements, material modelling and contact procedures are three major considerations for a reliable numerical analysis of plastic forming processes. Two new quadrilaterals with reduced integration scheme are introduced for shell analysis in order to improve computational efficiency without sacryfying accuracy: the first one is formulated for plane stress condition and the second designed to include through-thickness effects with the consideration of the normal stress along thickness direction. Barlat's yield criterion, which was reported to be adequate to model anisotropy of aluminum alloy sheets, is used together with a multi-stage return mapping method to account for plastic anisotropy of the rolled sheet. A brief revision of contact algorithms is included, specially the computational aspects related to their numerical implementation within sheet metal forming context. Various examples are given to demonstrate the accuracy and robustness of the proposed formulations.
引用
收藏
页码:3 / 66
页数:64
相关论文
共 100 条
[11]   HOURGLASS CONTROL IN LINEAR AND NONLINEAR PROBLEMS [J].
BELYTSCHKO, T ;
ONG, JSJ ;
LIU, WK ;
KENNEDY, JM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 43 (03) :251-276
[12]   EFFICIENT IMPLEMENTATION OF QUADRILATERALS WITH HIGH COARSE-MESH ACCURACY [J].
BELYTSCHKO, T ;
BACHRACH, WE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 54 (03) :279-301
[13]   EXPLICIT ALGORITHMS FOR THE NONLINEAR DYNAMICS OF SHELLS [J].
BELYTSCHKO, T ;
LIN, JI ;
TSAY, CS .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 42 (02) :225-251
[14]   CONTACT-IMPACT BY THE PINBALL ALGORITHM WITH PENALTY AND LAGRANGIAN-METHODS [J].
BELYTSCHKO, T ;
NEAL, MO .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (03) :547-572
[15]   PHYSICAL STABILIZATION OF THE 4-NODE SHELL ELEMENT WITH ONE-POINT QUADRATURE [J].
BELYTSCHKO, T ;
LEVIATHAN, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 113 (3-4) :321-350
[16]   PROJECTION SCHEMES FOR ONE-POINT QUADRATURE SHELL ELEMENTS [J].
BELYTSCHKO, T ;
LEVIATHAN, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 115 (3-4) :277-286
[17]   A STABILIZATION PROCEDURE FOR THE QUADRILATERAL PLATE ELEMENT WITH ONE-POINT QUADRATURE [J].
BELYTSCHKO, T ;
TSAY, CS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (03) :405-419
[18]  
Belytschko T., 2013, NONLINEAR FINITE ELE
[19]  
BENSON DJ, 1987, SINGLE SURFACE CONTA
[20]   A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains [J].
Betsch, P ;
Gruttmann, F ;
Stein, E .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 130 (1-2) :57-79