A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age

被引:2
作者
Li, Xia [1 ]
Fischer, Hakan [2 ,3 ]
Manzouri, Amirhossein [2 ]
Mansson, Kristoffer N. T. [2 ,4 ]
Li, Tie-Qiang [1 ,5 ,6 ]
机构
[1] China Jiliang Univ, Inst Informat Engn, Hangzhou, Peoples R China
[2] Stockholm Univ, Dept Psychol, Stockholm, Sweden
[3] Stockholm Univ, Brain Imaging Ctr, Stockholm, Sweden
[4] Karolinska Inst, Dept Clin Neurosci, Ctr Psychiat Res, Stockholm, Sweden
[5] Karolinska Inst, Dept Clin Sci Intervent & Technol, Solna, Sweden
[6] Karolinska Univ Hosp, Dept Med Radiat & Nucl Med, Solna, Sweden
关键词
quantitative data-driven analysis (QDA); resting-state functional magnetic resonance imaging (R-fMRI); resting-state functional connectivity (RFC); connectivity strength index (CSI); connectivity density index (CDI); adult age; LOW-FREQUENCY FLUCTUATION; DEFAULT MODE NETWORK; REGIONAL BRAIN SHRINKAGE; HEALTHY OLDER-ADULTS; SEX-DIFFERENCES; INDIVIDUAL-DIFFERENCES; ALZHEIMERS-DISEASE; EPISODIC MEMORY; CONNECTIVITY; FMRI;
D O I
10.3389/fnins.2021.768418
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
引用
收藏
页数:17
相关论文
共 86 条
  • [1] Developmental sex differences in resting state functional connectivity of amygdala sub-regions
    Alarcon, Gabriela
    Cservenka, Anita
    Rudolph, Marc D.
    Fair, Damien A.
    Nagel, Bonnie J.
    [J]. NEUROIMAGE, 2015, 115 : 235 - 244
  • [2] A baseline for the multivariate comparison of resting-state networks
    Allen, Elena A.
    Erhardt, Erik B.
    Damaraju, Eswar
    Gruner, William
    Segall, Judith M.
    Silva, Rogers F.
    Havlicek, Martin
    Rachakonda, Srinivas
    Fries, Jill
    Kalyanam, Ravi
    Michael, Andrew M.
    Caprihan, Arvind
    Turner, Jessica A.
    Eichele, Tom
    Adelsheim, Steven
    Bryan, Angela D.
    Bustillo, Juan
    Clark, Vincent P.
    Ewing, Sarah W. Feldstein
    Filbey, Francesca
    Ford, Corey C.
    Hutchison, Kent
    Jung, Rex E.
    Kiehl, Kent A.
    Kodituwakku, Piyadasa
    Komesu, Yuko M.
    Mayer, Andrew R.
    Pearlson, Godfrey D.
    Phillips, John P.
    Sadek, Joseph R.
    Stevens, Michael
    Teuscher, Ursina
    Thoma, Robert J.
    Calhoun, Vince D.
    [J]. FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
  • [3] Negative BOLD-fMRI signals in large cerebral veins
    Bianciardi, Marta
    Fukunaga, Masaki
    van Gelderen, Peter
    de Zwart, Jacco A.
    Duyn, Jeff H.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2011, 31 (02) : 401 - 412
  • [4] Toward discovery science of human brain function
    Biswal, Bharat B.
    Mennes, Maarten
    Zuo, Xi-Nian
    Gohel, Suril
    Kelly, Clare
    Smith, Steve M.
    Beckmann, Christian F.
    Adelstein, Jonathan S.
    Buckner, Randy L.
    Colcombe, Stan
    Dogonowski, Anne-Marie
    Ernst, Monique
    Fair, Damien
    Hampson, Michelle
    Hoptman, Matthew J.
    Hyde, James S.
    Kiviniemi, Vesa J.
    Kotter, Rolf
    Li, Shi-Jiang
    Lin, Ching-Po
    Lowe, Mark J.
    Mackay, Clare
    Madden, David J.
    Madsen, Kristoffer H.
    Margulies, Daniel S.
    Mayberg, Helen S.
    McMahon, Katie
    Monk, Christopher S.
    Mostofsky, Stewart H.
    Nagel, Bonnie J.
    Pekar, James J.
    Peltier, Scott J.
    Petersen, Steven E.
    Riedl, Valentin
    Rombouts, Serge A. R. B.
    Rypma, Bart
    Schlaggar, Bradley L.
    Schmidt, Sein
    Seidler, Rachael D.
    Siegle, Greg J.
    Sorg, Christian
    Teng, Gao-Jun
    Veijola, Juha
    Villringer, Arno
    Walter, Martin
    Wang, Lihong
    Weng, Xu-Chu
    Whitfield-Gabrieli, Susan
    Williamson, Peter
    Windischberger, Christian
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) : 4734 - 4739
  • [5] Default mode network connectivity:: effects of age sex, and analytic approach
    Bluhm, Robyn L.
    Osuch, Elizabeth A.
    Lanius, Ruth A.
    Boksman, Kristine
    Neufeld, Richard W. J.
    Theberge, Jean
    Williamson, Peter
    [J]. NEUROREPORT, 2008, 19 (08) : 887 - 891
  • [6] Potential pitfalls when denoising resting state fMRI data using nuisance regression
    Bright, Molly G.
    Tench, Christopher R.
    Murphy, Kevin
    [J]. NEUROIMAGE, 2017, 154 : 159 - 168
  • [7] The brain's default network - Anatomy, function, and relevance to disease
    Buckner, Randy L.
    Andrews-Hanna, Jessica R.
    Schacter, Daniel L.
    [J]. YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 : 1 - 38
  • [8] Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease
    Buckner, Randy L.
    Sepulcre, Jorge
    Talukdar, Tanveer
    Krienen, Fenna M.
    Liu, Hesheng
    Hedden, Trey
    Andrews-Hanna, Jessica R.
    Sperling, Reisa A.
    Johnson, Keith A.
    [J]. JOURNAL OF NEUROSCIENCE, 2009, 29 (06) : 1860 - 1873
  • [9] Age differences in the intrinsic functional connectivity of default network subsystems
    Campbell, Karen L.
    Grigg, Omer
    Saverino, Cristina
    Churchill, Nathan
    Grady, Cheryl L.
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2013, 5
  • [10] Resting-state "physiological networks"
    Chen, Jingyuan E.
    Lewis, Laura D.
    Chang, Catie
    Tian, Qiyuan
    Fultz, Nina E.
    Ohringer, Ned A.
    Rosen, Bruce R.
    Polimeni, Jonathan R.
    [J]. NEUROIMAGE, 2020, 213