Efficient and tunable spectral compression using frequency-domain nonlinear optics

被引:5
作者
Thorn, K. E. [1 ,2 ,3 ]
Monahan, N. R. [1 ,2 ,3 ]
Prasad, S. K. K. [1 ,2 ,3 ,4 ]
Chen, K. [1 ,2 ,3 ]
Hodgkiss, J. M. [1 ,2 ,3 ]
机构
[1] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington, New Zealand
[2] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington, New Zealand
[3] Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
[4] UNSW Sydney, Sch Chem, ARC Ctr Excellence Exciton Sci, Sydney, NSW 2052, Australia
来源
OPTICS EXPRESS | 2018年 / 26卷 / 21期
关键词
STIMULATED RAMAN-SPECTROSCOPY; BANDWIDTH PICOSECOND PULSES; FEMTOSECOND PULSES; GENERATION;
D O I
10.1364/OE.26.028140
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key requirement in the field of ultrafast vibrational spectroscopy is to efficiently generate intense tunable narrowband picosecond laser pulses synchronized to a broadband femtosecond laser source. Current nonlinear methods for picosecond pulse generation suffer from complexities in both experimental implementation and pulse frequency tunability. We present here a straightforward method for spectral bandwidth compression that produces frequency tunable picosecond pulses with efficient power conversion. Broadband femtosecond laser pulses are compressed to narrowband picosecond pulses using frequency domain sum-frequency generation of spatially chirped pulses, achieving spectral bandwidths of <20 cm(-1) and power conversion efficiency of similar to 18%. The experimental design of the bandwidth compressor is presented and its application to stimulated Raman spectroscopy is demonstrated. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:28140 / 28149
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2006, Nonlinear Optics
[2]  
Born M., 2013, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, DOI 10.1017/CBO9781139644181
[3]   Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra [J].
Chen, Kai ;
Gallaher, Joseph K. ;
Barker, Alex J. ;
Hodgkiss, Justin M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1732-1737
[4]   Wavelength-tunable spectral compression in a dispersion-increasing fiber [J].
Chuang, Hsiu-Po ;
Huang, Chen-Bin .
OPTICS LETTERS, 2011, 36 (15) :2848-2850
[5]   Femtosecond Stimulated Raman Spectroscopy [J].
Dietze, Daniel R. ;
Mathies, Richard A. .
CHEMPHYSCHEM, 2016, 17 (09) :1224-1251
[6]   An efficient setup for femtosecond stimulated Raman spectroscopy [J].
Kovalenko, S. A. ;
Dobryakov, A. L. ;
Ernsting, N. P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (06)
[7]   A femtosecond stimulated raman spectrograph for the near ultraviolet [J].
Laimgruber, S. ;
Schachenmayr, H. ;
Schmidt, B. ;
Zinth, W. ;
Gilch, P. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (04) :557-564
[8]  
Lavoie J, 2013, NAT PHOTONICS, V7, P363, DOI [10.1038/NPHOTON.2013.47, 10.1038/nphoton.2013.47]
[9]   Theory of femtosecond stimulated Raman spectroscopy [J].
Lee, SY ;
Zhang, DH ;
McCamant, DW ;
Kukura, P ;
Mathies, RA .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) :3632-3642
[10]   Large-scale and structure-tunable laser spectral compression in an optical dispersion-increasing fiber [J].
Lin, Yi-Song ;
Huang, Chen-Bin .
OPTICS EXPRESS, 2017, 25 (15) :18024-18030