Non Uniqueness of Power-Law Flows

被引:24
作者
Burczak, Jan [1 ]
Modena, Stefano [2 ]
Szekelyhidi, Laszlo [1 ]
机构
[1] Univ Leipzig, Inst Math, D-04103 Leipzig, Germany
[2] Tech Univ Darmstadt, Fachbereich Math, D-64285 Darmstadt, Germany
基金
欧洲研究理事会;
关键词
WEAK SOLUTIONS; EULER EQUATIONS; EXISTENCE; FLUIDS; DISSIPATION; REGULARITY; VISCOSITY;
D O I
10.1007/s00220-021-04231-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the technique of convex integration to obtain non-uniqueness and existence results for power-law fluids, in dimension d >= 3. For the power index q below the compactness threshold, i.e. q is an element of (1, 2d/d+2), we show ill-posedness of Leray-Hopf solutions. For a wider class of indices q is an element of (1, 3d+2/d+2) we show ill-posedness of distributional (non-Leray-Hopf) solutions, extending the seminal paper of Buckmaster & Vicol [10]. In this wider class we also construct non-unique solutions for every datum in L-2.
引用
收藏
页码:199 / 243
页数:45
相关论文
共 40 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]   Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity [J].
Beekie, Rajendra ;
Buckmaster, Tristan ;
Vicol, Vlad .
ANNALS OF PDE, 2020, 6 (01)
[3]  
Bird R. B., 1987, DYNAMICS POLYMERICLI, P94
[4]   ON THE CLASSIFICATION OF INCOMPRESSIBLE FLUIDS AND A MATHEMATICAL ANALYSIS OF THE EQUATIONS THAT GOVERN THEIR MOTION [J].
Blechta, Jan ;
Malek, Josef ;
Rajagopal, K. R. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :1232-1289
[5]   Positive Solutions of Transport Equations and Classical Nonuniqueness of Characteristic curves [J].
Brue, Elia ;
Colombo, Maria ;
De Lellis, Camillo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) :1055-1090
[6]  
Buckmaster T., ARXIV180900600
[7]   Convex integration and phenomenologies in turbulence [J].
Buckmaster, Tristan ;
Vicol, Vlad .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2019, 6 (1-2) :173-263
[8]   Nonuniqueness of Weak Solutions to the SQG Equation [J].
Buckmaster, Tristan ;
Shkoller, Steve ;
Vicol, Vlad .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (09) :1809-1874
[9]   Nonuniqueness of weak solutions to the Navier-Stokes equation [J].
Buckmaster, Tristan ;
Vicol, Vlad .
ANNALS OF MATHEMATICS, 2019, 189 (01) :101-144
[10]   Onsager's Conjecture for Admissible Weak Solutions [J].
Buckmaster, Tristan ;
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. ;
Vicol, Vlad .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (02) :229-274