Incomplete 2D Hermite polynomials: properties and applications

被引:36
作者
Dattoli, G [1 ]
机构
[1] Ctr Ric Frascati, Div Fis Applicata, ENEA, I-00044 Frascati, Rome, Italy
关键词
D O I
10.1016/S0022-247X(03)00259-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Incomplete forms of two-variable two-index Hermite polynomials are introduced. Their link with Laguerre polynomials is discussed and it is shown that they are a useful tool to study quantum mechanical harmonic oscillator entangled states. The possibility of developing the theory of complete 2D Hermite polynomials from the point of view of the incomplete forms is analyzed too. The orthogonality properties of the associated harmonic-oscillator functions are finally discussed. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 454
页数:8
相关论文
共 14 条
[1]  
APPELL P, 1926, KAMPE FERIET FONCTIO
[2]   PHASE-SPACE DYNAMICS AND HERMITE-POLYNOMIALS OF 2 VARIABLES AND 2 INDEXES [J].
DATTOLI, G ;
LORENZUTTA, S ;
MAINO, G ;
TORRE, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4451-4462
[3]   An alternative point of view to the theory of fractional Fourier transform [J].
Dattoli, G ;
Torre, A ;
Mazzacurati, G .
IMA JOURNAL OF APPLIED MATHEMATICS, 1998, 60 (03) :215-224
[4]  
Dattoli G., 1996, THEORY APPL GEN BESS
[5]  
DATTOLI G, 1997, NUOVO CIMENTO B, V122, P133
[6]  
Dattoli G., 1995, Ann. Numer. Math., V2, P211
[7]  
DATTOLI G, IN PRESS J INT TRANS
[8]  
Dattoli G., 1997, MATEMATICHE, V52, P337
[9]   NEW RELATIONS FOR 2-DIMENSIONAL HERMITE-POLYNOMIALS [J].
DODONOV, VV ;
MANKO, VI .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4277-4294
[10]  
HERMITE C, 1864, CR HEBD ACAD SCI, V5, P93