Shedding Light on Variational Autoencoders

被引:1
|
作者
Ruiz Vargas, J. C. [1 ]
Novaes, S. F. [1 ]
Cobe, R. [1 ]
Iope, R. [1 ]
Stanzani, S. [1 ]
Tomei, T. R. [1 ]
机构
[1] Sao Paulo State Univ Unesp, Ctr Sci Comp NCC, Sao Paulo, SP, Brazil
来源
2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018) | 2018年
基金
巴西圣保罗研究基金会;
关键词
Variational Autoencoders; Machine Learning; Tensorflow; Fresnel diffraction;
D O I
10.1109/CLEI.2018.00043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [21] SRVAE: Super Resolution using Variational Autoencoders
    Heydari, A. Ali
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXI, 2020, 11400
  • [22] Modelling urban networks using Variational Autoencoders
    Kempinska, Kira
    Murcio, Roberto
    APPLIED NETWORK SCIENCE, 2019, 4 (01)
  • [23] Variational Autoencoders for Data Augmentation in Clinical Studies
    Papadopoulos, Dimitris
    Karalis, Vangelis D.
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [24] FROM SYMBOLS TO SIGNALS: SYMBOLIC VARIATIONAL AUTOENCODERS
    Devaraj, Chinmaya
    Chowdhury, Aritra
    Jain, Arpit
    Kubricht, James R.
    Tu, Peter
    Santamaria-Pang, Alberto
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3317 - 3321
  • [25] Deep Variational Autoencoders for NPC Behaviour Classification
    Soares, Everton Schumacker
    Bulitko, Vadim
    2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [26] DoS and DDoS mitigation using Variational Autoencoders
    Barli, Eirik Molde
    Yazidi, Anis
    Viedma, Enrique Herrera
    Haugerud, Harek
    COMPUTER NETWORKS, 2021, 199
  • [27] VARIATIONAL AUTOENCODERS FOR HYPERSPECTRAL UNMIXING WITH ENDMEMBER VARIABILITY
    Shi, Shuaikai
    Zhao, Min
    Zhang, Lijun
    Chen, Jie
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1875 - 1879
  • [28] Item Recommendation with Variational Autoencoders and Heterogeneous Priors
    Karamanolakis, Giannis
    Cherian, Kevin Raji
    Narayan, Ananth Ravi
    Yuan, Jie
    Tang, Da
    Jebara, Tony
    PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), 2018, : 10 - 14
  • [29] Learning conditional variational autoencoders with missing covariates
    Ramchandran, Siddharth
    Tikhonov, Gleb
    Lonnroth, Otto
    Tiikkainen, Pekka
    Lahdesmaki, Harri
    PATTERN RECOGNITION, 2024, 147
  • [30] Modelling urban networks using Variational Autoencoders
    Kira Kempinska
    Roberto Murcio
    Applied Network Science, 4