Shedding Light on Variational Autoencoders

被引:1
|
作者
Ruiz Vargas, J. C. [1 ]
Novaes, S. F. [1 ]
Cobe, R. [1 ]
Iope, R. [1 ]
Stanzani, S. [1 ]
Tomei, T. R. [1 ]
机构
[1] Sao Paulo State Univ Unesp, Ctr Sci Comp NCC, Sao Paulo, SP, Brazil
来源
2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018) | 2018年
基金
巴西圣保罗研究基金会;
关键词
Variational Autoencoders; Machine Learning; Tensorflow; Fresnel diffraction;
D O I
10.1109/CLEI.2018.00043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength.
引用
收藏
页码:294 / 298
页数:5
相关论文
共 50 条
  • [1] Generating Transit Light Curves with Variational Autoencoders
    Woodward, Douglas
    Stevens, Elizabeth
    Linstead, Erik
    2019 IEEE INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2019), 2019, : 24 - 32
  • [2] Subitizing with Variational Autoencoders
    Wever, Rijnder
    Runia, Tom F. H.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT III, 2019, 11131 : 617 - 627
  • [3] Affine Variational Autoencoders
    Bidart, Rene
    Wong, Alexander
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 461 - 472
  • [4] Quality metrics of variational autoencoders
    Leontev, Mikhail
    Mikheev, Alexander
    Sviatov, Kirill
    Sukhov, Sergey
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [5] Joint sparsity-biased variational graph autoencoders
    Lawley, Lane
    Frey, Will
    Mullen, Patrick
    Wissner-Gross, Alexander D.
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2021, 18 (03): : 239 - 246
  • [6] Unsupervised clustering of Roman potsherds via Variational Autoencoders
    Parisotto, Simone
    Leone, Ninetta
    Schonlieb, Carola-Bibiane
    Launaro, Alessandro
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2022, 142
  • [7] Solving Bayesian Inverse Problems via Variational Autoencoders
    Goh, Hwan
    Sheriffdeen, Sheroze
    Wittmer, Jonathan
    Bui-Thanh, Tan
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 386 - 424
  • [8] EnsVAE: Ensemble Variational Autoencoders for Recommendations
    Drif, Ahlem
    Zerrad, Houssem Eddine
    Cherifi, Hocine
    IEEE ACCESS, 2020, 8 : 188335 - 188351
  • [9] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [10] Convolutional Variational Autoencoders for Image Clustering
    Nellas, Ioannis A.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 695 - 702