Empirical likelihood for quantiles under negatively associated samples

被引:11
作者
Lei, Qingzhu [1 ]
Qin, Yongsong [1 ]
机构
[1] Guangxi Normal Univ Guilin, Sch Math Sci, Guangxi 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantile; Blockwise empirical likelihood; Negatively associated sample; Confidence interval; WEAKLY DEPENDENT PROCESSES; RANDOM-VARIABLES; CONFIDENCE-INTERVALS; ASYMPTOTIC NORMALITY; MOMENT INEQUALITIES; CONVERGENCE; SEQUENCES; ESTIMATOR; SUMS;
D O I
10.1016/j.jspi.2010.10.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the construction of confidence intervals for quantiles of a population under a negatively associated sample by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically chi(2)-type distributed. The result is used to obtain EL based confidence intervals for quantiles of a population. Results of a simulation study on the finite sample performance of the proposed confidence intervals are reported. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1325 / 1332
页数:8
相关论文
共 23 条
[1]   SOME CONCEPTS OF NEGATIVE DEPENDENCE [J].
BLOCK, HW ;
SAVITS, TH ;
SHAKED, M .
ANNALS OF PROBABILITY, 1982, 10 (03) :765-772
[2]   Berry-Esseen bounds for smooth estimator of a distribution function under association [J].
Cai, ZW ;
Roussas, GG .
JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 11 (1-3) :79-106
[3]   Smooth estimate of quantiles under association [J].
Cai, ZW ;
Roussas, GG .
STATISTICS & PROBABILITY LETTERS, 1997, 36 (03) :275-287
[4]  
Chen JH, 2002, STAT SINICA, V12, P1223
[5]  
Chen SX, 2009, STAT SINICA, V19, P71
[6]   SMOOTHED EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR QUANTILES [J].
CHEN, SX ;
HALL, P .
ANNALS OF STATISTICS, 1993, 21 (03) :1166-1181
[7]   METHODOLOGY AND ALGORITHMS OF EMPIRICAL LIKELIHOOD [J].
HALL, P ;
LASCALA, B .
INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (02) :109-127
[8]  
Hall P., 2013, BOOTSTRAP EDGEWORTH
[9]   Some maximal inequalities and complete convergences of negatively associated random sequences [J].
Huang, WT ;
Xu, B .
STATISTICS & PROBABILITY LETTERS, 2002, 57 (02) :183-191
[10]   Jackknife Empirical Likelihood [J].
Jing, Bing-Yi ;
Yuan, Junqing ;
Zhou, Wang .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) :1224-1232