Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method

被引:52
|
作者
Shehu, Yekini [1 ,2 ]
Iyiola, Olaniyi S. [3 ]
机构
[1] Univ Wurzburg, Inst Math, Wurzburg, Germany
[2] Univ Nigeria, Dept Math, Nsukka, Nigeria
[3] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
关键词
Proximal split feasibility problems; Moreau-Yosida approximate; inertial term; weak convergence; FORWARD-BACKWARD ALGORITHM; MONOTONE-OPERATORS; FIXED-POINTS; CQ ALGORITHM; THEOREMS; SUM; PROJECTION; RECOVERY; ZERO; SET;
D O I
10.1007/s11784-017-0435-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a proximal split feasibility algorithm with an additional inertial extrapolation term for solving a proximal split feasibility problem under weaker conditions on the step sizes. The two convex and lower semi continuous objective functions are assumed to be non-smooth. Some applications to split inclusion problem and split equilibrium problem are given. We demonstrate the efficiency of the proposed algorithm with numerical experiments.
引用
收藏
页码:2483 / 2510
页数:28
相关论文
共 50 条
  • [1] Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method
    Yekini Shehu
    Olaniyi S. Iyiola
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2483 - 2510
  • [2] An inertial extrapolation method for multiple-set split feasibility problem
    Taddele, Guash Haile
    Kumam, Poom
    Gebrie, Anteneh Getachew
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] Strong convergence of an inertial extrapolation method for a split system of minimization problems
    Gebrie, Anteneh Getachew
    Wangkeeree, Rabian
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 332 - 351
  • [4] A method with inertial extrapolation step for split monotone inclusion problems
    Yao, Yonghong
    Shehu, Yekini
    Li, Xiao-Huan
    Dong, Qiao-Li
    OPTIMIZATION, 2021, 70 (04) : 741 - 761
  • [5] Inertial relaxedCQalgorithms for solving a split feasibility problem in Hilbert spaces
    Sahu, D. R.
    Cho, Y. J.
    Dong, Q. L.
    Kashyap, M. R.
    Li, X. H.
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1075 - 1095
  • [6] CONVERGENCE ANALYSIS OF A NEW RELAXED ALGORITHM WITH INERTIAL FOR SOLVING SPLIT FEASIBILITY PROBLEMS
    Ogbuisi, Ferdinard U.
    Shehu, Yekini
    Yao, Jen-chih
    FIXED POINT THEORY, 2024, 25 (01): : 249 - 270
  • [7] STRONG CONVERGENCE RESULTS FOR THE SPLIT FIXED POINT PROBLEM AND THE PROXIMAL SPLIT FEASIBILITY PROBLEM
    Yao, Zhangsong
    Shahzad, Naseer
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 1831 - 1842
  • [8] Nonlinear iteration method for proximal split feasibility problems
    Shehu, Yekini
    Iyiola, Olaniyi S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 781 - 802
  • [9] Strong convergence result for proximal split feasibility problem in Hilbert spaces
    Shehu, Yekini
    Iyiola, Olaniyi S.
    OPTIMIZATION, 2017, 66 (12) : 2275 - 2290
  • [10] Convergence Rate of Inertial Proximal Algorithms with General Extrapolation and Proximal Coefficients
    Attouch, Hedy
    Chbani, Zaki
    Riahi, Hassan
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (02) : 247 - 276