Octonion Offset Linear Canonical Transform

被引:7
作者
Bhat, Younis Ahmad [1 ]
Sheikh, N. A. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Srinagar 190006, Jammu & Kashmir, India
关键词
Octonion linear canonical transform; Quaternionic offset linear canonical transform; Uncertainty principle; FOURIER-TRANSFORM; HYPERCOMPLEX; RECOGNITION; COMPLEX;
D O I
10.1007/s13324-022-00705-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a novel integral transform namely octonion offset linear canonical transform (OCOLCT). We first establish the fundamental properties associated with octonion offset linear canonical transform (OCOLCT) and obtain a relationship between OCOLCT and quaternion offset linear canonical transform (QOLCT). Furthermore, we derive the Hardy's uncertainty principle and logarithmic uncertainty principle associated with OCOLCT. Towards the end, some potential applications are presented.
引用
收藏
页数:24
相关论文
共 22 条
[1]  
[Anonymous], 2000, 2000 10 EUROPEAN SIG
[2]  
Bas P, 2003, 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P521
[3]   Quaternion fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations [J].
Bayro-Corrochano, Eduardo ;
Trujillo, Noel ;
Naranjo, Michel .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) :179-190
[4]   Discrete octonion Fourier transform and the analysis of discrete 3-D data [J].
Blaszczyk, Lukasz .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
[5]   A generalization of the octonion Fourier transform to 3-D octonion-valued signals: properties and possible applications to 3-D LTI partial differential systems [J].
Blaszczyk, Lukasz .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (04) :1227-1257
[6]   Octonion Fourier Transform of real-valued functions of three variables - selected properties and examples [J].
Blaszczyk, Lukasz ;
Snopek, Kajetana M. .
SIGNAL PROCESSING, 2017, 136 :29-37
[7]  
Brackx F, 2013, TRENDS MATH, pXI
[8]  
De Bie H., 2015, OPERATOR THEORY, P1651
[9]   Generalized uncertainty principles associated with the quaternionic offset linear canonical transform [J].
El Haoui, Youssef ;
Hitzer, Eckhard .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (09) :2102-2121
[10]   Hypercomplex Fourier transforms of color images [J].
Ell, Todd A. ;
Sangwine, Stephen J. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :22-35