Gradient Statistics Aware Power Control for Over-the-Air Federated Learning

被引:104
|
作者
Zhang, Naifu [1 ]
Tao, Meixia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fading channels; Training; Computational modeling; Atmospheric modeling; Wireless networks; Power control; Power transmission; Federated learning; over-the-air computation; power control; fading channel;
D O I
10.1109/TWC.2021.3065748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a promising technique that enables many edge devices to train a machine learning model collaboratively in wireless networks. By exploiting the superposition nature of wireless waveforms, over-the-air computation (AirComp) can accelerate model aggregation and hence facilitate communication-efficient FL. Due to channel fading, power control is crucial in AirComp. Prior works assume that the signals to be aggregated from each device, i.e., local gradients have identical statistics. In FL, however, gradient statistics vary over both training iterations and feature dimensions, and are unknown in advance. This paper studies the power control problem for over-the-air FL by taking gradient statistics into account. The goal is to minimize the aggregation error by optimizing the transmit power at each device subject to average power constraints. We obtain the optimal policy in closed form when gradient statistics are given. Notably, we show that the optimal transmit power is continuous and monotonically decreases with the squared multivariate coefficient of variation (SMCV) of gradient vectors. We then propose a method to estimate gradient statistics with negligible communication cost. Experimental results demonstrate that the proposed gradient-statistics-aware power control achieves higher test accuracy than the existing schemes for a wide range of scenarios.
引用
收藏
页码:5115 / 5128
页数:14
相关论文
共 50 条
  • [41] Federated Learning via Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) : 2022 - 2035
  • [42] Over-The-Air Federated Learning Over Scalable Cell-Free Massive MIMO
    Sifaou, Houssem
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4214 - 4227
  • [43] An Overview on Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Lyu, Zhonghao
    Zhu, Guangxu
    Xu, Jie
    Xu, Lexi
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 202 - 210
  • [44] Scalable Hierarchical Over-the-Air Federated Learning
    Azimi-Abarghouyi, Seyed Mohammad
    Fodor, Viktoria
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8480 - 8496
  • [45] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [46] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [47] Deep Compression for Efficient and Accelerated Over-the-Air Federated Learning
    Khan, Fazal Muhammad Ali
    Abou-Zeid, Hatem
    Hassan, Syed Ali
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 25802 - 25817
  • [48] Edge Federated Learning via Unit-Modulus Over-The-Air Computation
    Wang, Shuai
    Hong, Yuncong
    Wang, Rui
    Hao, Qi
    Wu, Yik-Chung
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3141 - 3156
  • [49] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [50] Communication-Learning Co-Design for Differentially Private Over-the-Air Federated Learning With Device Sampling
    Hu, Zihao
    Yan, Jia
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 16788 - 16804