Gradient Statistics Aware Power Control for Over-the-Air Federated Learning

被引:104
|
作者
Zhang, Naifu [1 ]
Tao, Meixia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fading channels; Training; Computational modeling; Atmospheric modeling; Wireless networks; Power control; Power transmission; Federated learning; over-the-air computation; power control; fading channel;
D O I
10.1109/TWC.2021.3065748
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) is a promising technique that enables many edge devices to train a machine learning model collaboratively in wireless networks. By exploiting the superposition nature of wireless waveforms, over-the-air computation (AirComp) can accelerate model aggregation and hence facilitate communication-efficient FL. Due to channel fading, power control is crucial in AirComp. Prior works assume that the signals to be aggregated from each device, i.e., local gradients have identical statistics. In FL, however, gradient statistics vary over both training iterations and feature dimensions, and are unknown in advance. This paper studies the power control problem for over-the-air FL by taking gradient statistics into account. The goal is to minimize the aggregation error by optimizing the transmit power at each device subject to average power constraints. We obtain the optimal policy in closed form when gradient statistics are given. Notably, we show that the optimal transmit power is continuous and monotonically decreases with the squared multivariate coefficient of variation (SMCV) of gradient vectors. We then propose a method to estimate gradient statistics with negligible communication cost. Experimental results demonstrate that the proposed gradient-statistics-aware power control achieves higher test accuracy than the existing schemes for a wide range of scenarios.
引用
收藏
页码:5115 / 5128
页数:14
相关论文
共 50 条
  • [21] Optimal Power Control for Over-The-Air Federated Edge Learning Using Statistical Channel Knowledge
    Yu, Xichen
    Xiao, Bingnan
    Ni, Wei
    Wang, Xin
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 232 - 237
  • [22] Energy Harvesting Aware Client Selection for Over-the-Air Federated Learning
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5069 - 5074
  • [23] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [24] The Analysis and Optimization of Volatile Clients in Over-the-Air Federated Learning
    Shi, Fang
    Lin, Weiwei
    Wang, Xiumin
    Li, Keqin
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13144 - 13157
  • [25] Communication-and-Energy Efficient Over-the-Air Federated Learning
    Liang, Yipeng
    Chen, Qimei
    Zhu, Guangxu
    Jiang, Hao
    Eldar, Yonina C.
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 24 (01) : 767 - 782
  • [26] Coded Over-the-Air Computation for Model Aggregation in Federated Learning
    Zhang, Naifu
    Tao, Meixia
    Wang, Jia
    Shao, Shuo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (01) : 160 - 164
  • [27] On the Differential Privacy in Federated Learning Based on Over-the-Air Computation
    Park, Sangjun
    Choi, Wan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4269 - 4283
  • [28] Online Optimization for Over-the-Air Federated Learning With Energy Harvesting
    An, Qiaochu
    Zhou, Yong
    Wang, Zhibin
    Shan, Hangguan
    Shi, Yuanming
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7291 - 7306
  • [29] Over-the-Air Federated Learning with Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 291 - 295
  • [30] Robust Over-the-Air Federated Learning
    Kim, Hwanjin
    Nam, Hongjae
    Love, David J.
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,