Fully nonlinear equations on Riemannian manifolds with negative curvature

被引:71
作者
Gursky, MJ [1 ]
Viaclovsky, JA
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
fully nonlinear equations; Ricci curvature;
D O I
10.1512/iumj.2003.52.2313
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that every compact Riemannian manifold of dimension n greater than or equal to 3 with negative Ricci curvature is conformal to a metric with det(Ric) = constant. This is a special case of a more general theorem involving symmetric functions of the eigenvalues of the Ricci tensor.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 18 条
[1]  
[Anonymous], 1997, PRINCETON LANDMARKS
[2]   Prescribed scalar curvature on compact Riemann varieties in the negative case [J].
Aubin, T ;
Bismuth, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (02) :529-541
[3]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[4]  
BROOKS R, 1989, J DIFFER GEOM, V29, P85
[5]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[6]  
CHANG A, 2001, J ANAL, V87, P151
[7]  
DELANOE P, 2001, HESSIAN EQUATIONS ZE
[8]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P333
[9]   THE EXISTENCE OF NEGATIVELY RICCI CURVED METRICS ON 3 MANIFOLDS [J].
GAO, LZ ;
YAU, ST .
INVENTIONES MATHEMATICAE, 1986, 85 (03) :637-652
[10]  
GARDING L, 1959, J MATH MECH, V8, P957