Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting

被引:0
|
作者
Vega-Poot, Alberto [1 ,2 ]
Rodriguez-Perez, Manuel [3 ]
Becerril-Gonzalez, Juan [1 ]
Rodriguez-Gutierrez, Ingrid [1 ,4 ,5 ]
Su, Jinzhan [4 ]
Rodriguez-Gattorno, Geonel [1 ]
Teoh, Wey Yang [6 ,7 ]
Oskam, Gerko [1 ,8 ]
机构
[1] CINVESTAV IPN, Dept Appl Phys, Antigua Carretera Progreso Km 6, Merida 97310, Yucatan, Mexico
[2] Univ Modelo Merida, Carretera Cholul,200 M Pertfer, Merida, Yucatan, Mexico
[3] Univ Autonoma Campeche, Fac Ingn, Campus 5, San Francisco Campeche 24085, Mexico
[4] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[5] Fed Univ ABC UFABC, Lab Alternat Energy & Nanomat, Humanities & Nat Sci Ctr CCNH, Santo Andre, SP, Brazil
[6] Univ Malaya, Ctr Separat Sci & Technol, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[7] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[8] Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Seville 41013, Spain
基金
澳大利亚研究理事会;
关键词
IRON-OXIDE; OXIDATION; PHOTOANODES; PERFORMANCE; EFFICIENT; STATES; CO;
D O I
10.1149/1945-7111/ac700b
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The balance of the charge transfer and recombination kinetics of photoelectrodes governs the device efficiency for solar water splitting. Hematite (alpha-Fe2O3) is a photoanode typically used because of advantages such as its abundance, low cost, multiple convenient deposition methods, and an attractive bandgap energy; however, poor electrical properties prevent high solar energy to hydrogen conversion efficiencies. In this work, we evaluate and compare several strategies to address this issue, using a nanorod array morphology and incorporation of overlayers of one or more materials that favor the charge carrier transfer kinetics and reduce surface recombination. We use intensity-modulated photocurrent spectroscopy (IMPS) to evaluate these systems, and demonstrate that the presence of TiO2 and MoO x overlayers successfully suppresses surface recombination through passivation of hematite interfacial recombination sites. However, the hole transfer process at the overlayers occurs at more positive potentials due to the location of the new surface states at the overlayer-electrolyte interface. We show that the deposition of the CoPi oxygen evolution reaction co-catalyst partially addresses this disadvantage. The best efficiencies were obtained for the CoPi-TiO2/alpha-Fe2O3 and CoPi-MoO x /TiO2/alpha-Fe2O3 photoelectrodes, with internal quantum efficiencies of 0.42-0.44 under 455 nm irradiation.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting
    Wang, Chong Wu
    Yang, Shuang
    Fang, Wen Qi
    Liu, Porun
    Zhao, Huijun
    Yang, Hua Gui
    NANO LETTERS, 2016, 16 (01) : 427 - 433
  • [42] Growth of p-Type Hematite by Atomic Layer Deposition and Its Utilization for Improved Solar Water Splitting
    Lin, Yongjing
    Xu, Yang
    Mayer, Matthew T.
    Simpson, Zachary I.
    McMahon, Gregory
    Zhou, Sa
    Wang, Dunwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) : 5508 - 5511
  • [43] Anodic deposition of nanostructured hematite film using agarose gel as template. Application in water splitting
    Sima, M.
    Vasile, E.
    Sima, A.
    Logofatu, C.
    ELECTROCHIMICA ACTA, 2017, 258 : 1453 - 1462
  • [44] High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting
    Ma, Yanxiao
    Shinde, Pravin S.
    Li, Xiao
    Pan, Shanlin
    ACS OMEGA, 2019, 4 (17): : 17257 - 17268
  • [45] Enhancement of the Solar Water Splitting Efficiency Mediated by Surface Segregation in Ti-Doped Hematite Nanorods
    Stanescu, Stefan
    Alun, Theïo
    Dappe, Yannick J.
    Ihiawakrim, Dris
    Ersen, Ovidiu
    Stanescu, Dana
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26593 - 26605
  • [46] Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale
    Wang, Wennie
    Radmilovic, Andjela
    Choi, Kyoung-Shin
    Galli, Giulia
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (20) : 3863 - 3872
  • [47] Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays
    Wang, Jian
    Feng, Bo
    Su, Jinzhan
    Guo, Liejin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) : 23143 - 23150
  • [48] Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting
    Li, Xianglin
    Bassi, Prince Saurabh
    Boix, Pablo P.
    Fang, Yanan
    Wong, Lydia Helena
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (31) : 16960 - 16966
  • [49] A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting
    Jiang, Daochuan
    Yue, Qiudi
    Tang, Shan
    Zhang, Lei
    Zhu, Liang
    Du, Pingwu
    JOURNAL OF CATALYSIS, 2018, 366 : 275 - 281
  • [50] Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting
    Lin, Yongjing
    Zhou, Sa
    Sheehan, Stafford W.
    Wang, Dunwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (08) : 2398 - 2401