Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting

被引:0
|
作者
Vega-Poot, Alberto [1 ,2 ]
Rodriguez-Perez, Manuel [3 ]
Becerril-Gonzalez, Juan [1 ]
Rodriguez-Gutierrez, Ingrid [1 ,4 ,5 ]
Su, Jinzhan [4 ]
Rodriguez-Gattorno, Geonel [1 ]
Teoh, Wey Yang [6 ,7 ]
Oskam, Gerko [1 ,8 ]
机构
[1] CINVESTAV IPN, Dept Appl Phys, Antigua Carretera Progreso Km 6, Merida 97310, Yucatan, Mexico
[2] Univ Modelo Merida, Carretera Cholul,200 M Pertfer, Merida, Yucatan, Mexico
[3] Univ Autonoma Campeche, Fac Ingn, Campus 5, San Francisco Campeche 24085, Mexico
[4] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[5] Fed Univ ABC UFABC, Lab Alternat Energy & Nanomat, Humanities & Nat Sci Ctr CCNH, Santo Andre, SP, Brazil
[6] Univ Malaya, Ctr Separat Sci & Technol, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[7] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[8] Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Seville 41013, Spain
基金
澳大利亚研究理事会;
关键词
IRON-OXIDE; OXIDATION; PHOTOANODES; PERFORMANCE; EFFICIENT; STATES; CO;
D O I
10.1149/1945-7111/ac700b
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The balance of the charge transfer and recombination kinetics of photoelectrodes governs the device efficiency for solar water splitting. Hematite (alpha-Fe2O3) is a photoanode typically used because of advantages such as its abundance, low cost, multiple convenient deposition methods, and an attractive bandgap energy; however, poor electrical properties prevent high solar energy to hydrogen conversion efficiencies. In this work, we evaluate and compare several strategies to address this issue, using a nanorod array morphology and incorporation of overlayers of one or more materials that favor the charge carrier transfer kinetics and reduce surface recombination. We use intensity-modulated photocurrent spectroscopy (IMPS) to evaluate these systems, and demonstrate that the presence of TiO2 and MoO x overlayers successfully suppresses surface recombination through passivation of hematite interfacial recombination sites. However, the hole transfer process at the overlayers occurs at more positive potentials due to the location of the new surface states at the overlayer-electrolyte interface. We show that the deposition of the CoPi oxygen evolution reaction co-catalyst partially addresses this disadvantage. The best efficiencies were obtained for the CoPi-TiO2/alpha-Fe2O3 and CoPi-MoO x /TiO2/alpha-Fe2O3 photoelectrodes, with internal quantum efficiencies of 0.42-0.44 under 455 nm irradiation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Hematite-based photoelectrode for solar water splitting with very high photovoltage
    Dias, Paula
    Andrade, Luisa
    Mendes, Adelio
    NANO ENERGY, 2017, 38 : 218 - 231
  • [32] The study of carrier transfer mechanism for nanostructural hematite photoanode for solar water splitting
    Chen, Yen-Jhih
    Chen, Liang-Yih
    APPLIED ENERGY, 2016, 164 : 924 - 933
  • [33] Reduction of charge carrier recombination by Ce gradient doping and surface polarization for solar water splitting
    Bai, Jinwei
    Gao, Rui-Ting
    Guo, Xiaotian
    He, Jinlu
    Liu, Xianhu
    Zhang, Xueyuan
    Wang, Lei
    CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [34] Fluorine-surface-modified tin-doped hematite nanorod array photoelectrodes with enhanced water oxidation activity
    Nguyen Duc Quang
    Phuoc Cao Van
    Duc Duy Le
    Majumder, Sutripto
    Nguyen Duc Chinh
    Jeong, Jong-Ryul
    Kim, Chunjoong
    Kim, Dojin
    APPLIED SURFACE SCIENCE, 2021, 558
  • [35] Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopyt
    Lopes, Tania
    Andrade, Luisa
    Le Formal, Florian
    Gratzel, Michael
    Sivula, Kevin
    Mendes, Adelio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (31) : 16515 - 16523
  • [36] Hematite Nanowire and Nanoflake-Decorated Photoelectrodes: Implications for Photoelectrochemical Water Splitting
    Chnani, Ahmed
    Strehle, Steffen
    ACS APPLIED NANO MATERIALS, 2022, 5 (01) : 1016 - 1022
  • [37] Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting
    Barroso, Monica
    Mesa, Camilo A.
    Pendlebury, Stephanie R.
    Cowan, Alexander J.
    Hisatomi, Takashi
    Sivula, Kevin
    Graetzel, Michael
    Klug, David R.
    Durrant, James R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) : 15640 - 15645
  • [38] Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics
    Shen, Shaohua
    Lindley, Sarah A.
    Chen, Xiangyan
    Zhang, Jin Z.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (09) : 2744 - 2775
  • [39] Ultrasmall Co3O4 Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite
    Feckl, Johann M.
    Dunn, Halina K.
    Zehetmaier, Peter M.
    Mueller, Alexander
    Pendlebury, Stephanie R.
    Zeller, Patrick
    Fominykh, Ksenia
    Kondofersky, Ilina
    Doeblinger, Markus
    Durrant, James R.
    Scheu, Christina
    Peter, Laurence
    Fattakhova-Rohlfing, Dina
    Bein, Thomas
    ADVANCED MATERIALS INTERFACES, 2015, 2 (18):
  • [40] Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting
    Shen, Shaohua
    Zhou, Jigang
    Dong, Chung-Li
    Hu, Yongfeng
    Tseng, Eric Nestor
    Guo, Penghui
    Guo, Liejin
    Mao, Samuel S.
    SCIENTIFIC REPORTS, 2014, 4