Charge Dynamics at Surface-Modified, Nanostructured Hematite Photoelectrodes for Solar Water Splitting

被引:0
|
作者
Vega-Poot, Alberto [1 ,2 ]
Rodriguez-Perez, Manuel [3 ]
Becerril-Gonzalez, Juan [1 ]
Rodriguez-Gutierrez, Ingrid [1 ,4 ,5 ]
Su, Jinzhan [4 ]
Rodriguez-Gattorno, Geonel [1 ]
Teoh, Wey Yang [6 ,7 ]
Oskam, Gerko [1 ,8 ]
机构
[1] CINVESTAV IPN, Dept Appl Phys, Antigua Carretera Progreso Km 6, Merida 97310, Yucatan, Mexico
[2] Univ Modelo Merida, Carretera Cholul,200 M Pertfer, Merida, Yucatan, Mexico
[3] Univ Autonoma Campeche, Fac Ingn, Campus 5, San Francisco Campeche 24085, Mexico
[4] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[5] Fed Univ ABC UFABC, Lab Alternat Energy & Nanomat, Humanities & Nat Sci Ctr CCNH, Santo Andre, SP, Brazil
[6] Univ Malaya, Ctr Separat Sci & Technol, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
[7] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[8] Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Seville 41013, Spain
基金
澳大利亚研究理事会;
关键词
IRON-OXIDE; OXIDATION; PHOTOANODES; PERFORMANCE; EFFICIENT; STATES; CO;
D O I
10.1149/1945-7111/ac700b
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The balance of the charge transfer and recombination kinetics of photoelectrodes governs the device efficiency for solar water splitting. Hematite (alpha-Fe2O3) is a photoanode typically used because of advantages such as its abundance, low cost, multiple convenient deposition methods, and an attractive bandgap energy; however, poor electrical properties prevent high solar energy to hydrogen conversion efficiencies. In this work, we evaluate and compare several strategies to address this issue, using a nanorod array morphology and incorporation of overlayers of one or more materials that favor the charge carrier transfer kinetics and reduce surface recombination. We use intensity-modulated photocurrent spectroscopy (IMPS) to evaluate these systems, and demonstrate that the presence of TiO2 and MoO x overlayers successfully suppresses surface recombination through passivation of hematite interfacial recombination sites. However, the hole transfer process at the overlayers occurs at more positive potentials due to the location of the new surface states at the overlayer-electrolyte interface. We show that the deposition of the CoPi oxygen evolution reaction co-catalyst partially addresses this disadvantage. The best efficiencies were obtained for the CoPi-TiO2/alpha-Fe2O3 and CoPi-MoO x /TiO2/alpha-Fe2O3 photoelectrodes, with internal quantum efficiencies of 0.42-0.44 under 455 nm irradiation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Ge-Mediated Modification in Ta3N5 Photoelectrodes with Enhanced Charge Transport for Solar Water Splitting
    Feng, Jianyong
    Cao, Dapeng
    Wang, Zhiqiang
    Luo, Wenjun
    Wang, Jiajia
    Li, Zhaosheng
    Zou, Zhigang
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (49) : 16384 - 16390
  • [22] Selective placement of modifiers on hematite thin films for solar water splitting
    Pires, Fabio A.
    dos Santos, Gabriel T.
    Bettini, Jefferson
    Costa, Carlos A. R.
    Goncalves, Renato V.
    Castro, Ricardo H. R.
    Souza, Flavio L.
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (20) : 5005 - 5017
  • [23] Surface restructuring of hematite photoanodes through ultrathin NiFeOx Catalyst: Amplified charge collection for solar water splitting and pollutant degradation
    Seenivasan, Selvaraj
    Adhikari, Sangeeta
    Kim, Do-Heyoung
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [24] Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
    Klahr, Benjamin
    Gimenez, Sixto
    Fabregat-Santiago, Francisco
    Hamann, Thomas
    Bisquert, Juan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) : 4294 - 4302
  • [25] Surface-oxidized titanium diboride as cocatalyst on hematite photoanode for solar water splitting
    Wu, Qiannan
    Liang, Xiao
    Chen, Hui
    Yang, Lan
    Xie, Tengfeng
    Zou, Xiaoxin
    CRYSTENGCOMM, 2022, 24 (12) : 2251 - 2257
  • [26] Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting
    Tamirat, Andebet Gedamu
    Dubale, Amare Aregahegn
    Su, Wei-Nien
    Chen, Hung-Ming
    Hwang, Bing-Joe
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) : 20881 - 20890
  • [27] Surface Tuning for Promoted Charge Transfer in Hematite Nanorod Arrays as Water-Splitting Photoanodes
    Shen, Shaohua
    Kronawitter, Coleman X.
    Jiang, Jiangang
    Mao, Samuel S.
    Guo, Liejin
    NANO RESEARCH, 2012, 5 (05) : 327 - 336
  • [28] Orientation modulated charge transport in hematite for photoelectrochemical water splitting
    Cai, Jiajia
    Liu, Yinglei
    Li, Song
    Gao, Meiqi
    Wang, Dunwei
    Qin, Gaowu
    FUNCTIONAL MATERIALS LETTERS, 2016, 9 (03)
  • [29] Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting
    Cesar, Ilkay
    Sivula, Kevin
    Kay, Andreas
    Zboril, Radek
    Graetzel, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) : 772 - 782
  • [30] Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting
    Mao, Lianlian
    Huang, Yu-Cheng
    Fu, Yanming
    Dong, Chung-Li
    Shen, Shaohua
    SCIENCE BULLETIN, 2019, 64 (17) : 1262 - 1271