CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications

被引:52
|
作者
Cheng, Hao [1 ]
Zhang, Feng [1 ]
Ding, Yang [1 ]
机构
[1] China Pharmaceut Univ, NMPA Key Lab Res & Evaluat Pharmaceut Preparat &, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas9; genome editing; site-specific trafficking; overcome off-target risks; therapeutic applications; CAS9; MESSENGER-RNA; NANOPARTICLE DELIVERY; CRISPR-CAS9; SYSTEM; DONOR DNA; GENE; BASE; CELLS; SPECIFICITY; INTEGRATION; ACTIVATION;
D O I
10.3390/pharmaceutics13101649
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) systems have emerged as a robust and versatile genome editing platform for gene correction, transcriptional regulation, disease modeling, and nucleic acids imaging. However, the insufficient transfection and off-target risks have seriously hampered the potential biomedical applications of CRISPR/Cas9 technology. Herein, we review the recent progress towards CRISPR/Cas9 system delivery based on viral and non-viral vectors. We summarize the CRISPR/Cas9-inspired clinical trials and analyze the CRISPR/Cas9 delivery technology applied in the trials. The rational-designed non-viral vectors for delivering three typical forms of CRISPR/Cas9 system, including plasmid DNA (pDNA), mRNA, and ribonucleoprotein (RNP, Cas9 protein complexed with gRNA) were highlighted in this review. The vector-derived strategies to tackle the off-target concerns were further discussed. Moreover, we consider the challenges and prospects to realize the clinical potential of CRISPR/Cas9-based genome editing.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [32] A CRISPR/Cas9 toolkit for multiplex genome editing in plants
    Xing, Hui-Li
    Dong, Li
    Wang, Zhi-Ping
    Zhang, Hai-Yan
    Han, Chun-Yan
    Liu, Bing
    Wang, Xue-Chen
    Chen, Qi-Jun
    BMC PLANT BIOLOGY, 2014, 14
  • [33] CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum
    Pohl, C.
    Kiel, J. A. K. W.
    Driessen, A. J. M.
    Bovenberg, R. A. L.
    Nygard, Y.
    ACS SYNTHETIC BIOLOGY, 2016, 5 (07): : 754 - 764
  • [34] Genome Editing of Babesia bovis Using the CRISPR/Cas9 System
    Hakimi, Hassan
    Ishizaki, Takahiro
    Kegawa, Yuto
    Kaneko, Osamu
    Kawazu, Shin-ichiro
    Asada, Masahito
    MSPHERE, 2019, 4 (03):
  • [35] Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9
    LaFountaine, Justin S.
    Fathe, Kristin
    Smyth, Hugh D. C.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2015, 494 (01) : 180 - 194
  • [36] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [37] CRISPR/Cas9 Immune System as a Tool for Genome Engineering
    Magdalena Hryhorowicz
    Daniel Lipiński
    Joanna Zeyland
    Ryszard Słomski
    Archivum Immunologiae et Therapiae Experimentalis, 2017, 65 : 233 - 240
  • [38] CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective
    Song, Runjie
    Zhai, Qing
    Sun, Lu
    Huang, Enxia
    Zhang, Yu
    Zhu, Yanli
    Guo, Qingyun
    Tian, Yanan
    Zhao, Baoyu
    Lu, Hao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (17) : 6919 - 6932
  • [39] Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review
    Ebrahimi, Vida
    Hashemi, Atieh
    GENE, 2020, 753
  • [40] Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9
    Stolfi, Alberto
    Gandhi, Shashank
    Salek, Farhana
    Christiaen, Lionel
    DEVELOPMENT, 2014, 141 (21): : 4115 - 4120