CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications

被引:52
|
作者
Cheng, Hao [1 ]
Zhang, Feng [1 ]
Ding, Yang [1 ]
机构
[1] China Pharmaceut Univ, NMPA Key Lab Res & Evaluat Pharmaceut Preparat &, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas9; genome editing; site-specific trafficking; overcome off-target risks; therapeutic applications; CAS9; MESSENGER-RNA; NANOPARTICLE DELIVERY; CRISPR-CAS9; SYSTEM; DONOR DNA; GENE; BASE; CELLS; SPECIFICITY; INTEGRATION; ACTIVATION;
D O I
10.3390/pharmaceutics13101649
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) systems have emerged as a robust and versatile genome editing platform for gene correction, transcriptional regulation, disease modeling, and nucleic acids imaging. However, the insufficient transfection and off-target risks have seriously hampered the potential biomedical applications of CRISPR/Cas9 technology. Herein, we review the recent progress towards CRISPR/Cas9 system delivery based on viral and non-viral vectors. We summarize the CRISPR/Cas9-inspired clinical trials and analyze the CRISPR/Cas9 delivery technology applied in the trials. The rational-designed non-viral vectors for delivering three typical forms of CRISPR/Cas9 system, including plasmid DNA (pDNA), mRNA, and ribonucleoprotein (RNP, Cas9 protein complexed with gRNA) were highlighted in this review. The vector-derived strategies to tackle the off-target concerns were further discussed. Moreover, we consider the challenges and prospects to realize the clinical potential of CRISPR/Cas9-based genome editing.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [22] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [23] Practical Recommendations for Improving Efficiency and Accuracy of the CRISPR/Cas9 Genome Editing System
    Karagyaur, M. N.
    Rubtsov, Y. P.
    Vasiliev, P. A.
    Tkachuk, V. A.
    BIOCHEMISTRY-MOSCOW, 2018, 83 (06) : 629 - 642
  • [24] Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing
    L. M. Kulishova
    I. P. Vokhtantsev
    D. V. Kim
    D. O. Zharkov
    Molecular Biology, 2023, 57 : 258 - 271
  • [25] Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications
    Li, Yamin
    Glass, Zachary
    Huang, Mingqian
    Chen, Zheng-Yi
    Xu, Qiaobing
    BIOMATERIALS, 2020, 234 (234)
  • [26] CRISPR/Cas9 Genome Editing Tool: A Promising Tool for Therapeutic Applications on Respiratory Diseases
    Shaikh, Sadiya Bi
    Bhandary, Yashodhar Prabhakar
    CURRENT GENE THERAPY, 2020, 20 (05) : 333 - 346
  • [27] Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing
    Zhang, Zhen
    Wan, Tao
    Chen, Yuxuan
    Chen, Yu
    Sun, Hongwei
    Cao, Tianqi
    Zhou Songyang
    Tang, Guping
    Wu, Chuanbin
    Ping, Yuan
    Xu, Fu-Jian
    Huang, Junjiu
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (05)
  • [28] CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications
    Ma, Xingliang
    Zhu, Qinlong
    Chen, Yuanling
    Liu, Yao-Guang
    MOLECULAR PLANT, 2016, 9 (07) : 961 - 974
  • [29] Application progress of CRISPR/Cas9 genome-editing technology in edible fungi
    Zhang, Yan
    Chen, Shutong
    Yang, Long
    Zhang, Qiang
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [30] Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuli-Responsive Vehicles
    Cai, Weiqi
    Luo, Tianli
    Mao, Lanqun
    Wang, Ming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (16) : 8596 - 8606