Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term

被引:11
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ,2 ]
Peng, Xiaoming [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Key Lab Math & Interdisciplinary Sci, Guangdong Higher Educ Inst, Guangzhou 510006, Guangdong, Peoples R China
关键词
Viscoelastic equation; nonlinear boundary source; potential wells; invariant sets; POSITIVE-INITIAL-ENERGY; POTENTIAL WELL THEORY; BLOW-UP; UNIFORM DECAY; GENERAL DECAY; POSEDNESS;
D O I
10.1002/mana.201500169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the initial boundary value problem for a viscoelastic wave equation with nonlinear boundary source term. First of all, we introduce a family of potential wells and prove the invariance of some sets. Then we establish the existence and nonexistence of global weak solution with small initial energy under suitable assumptions on the relaxation function g(.), nonlinear function f (.), the initial data and the parameters in the equation. Furthermore, we obtain the global existence of weak solution for the problem with critical initial conditions I(u(0)) >= 0 and E(0) = d. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1408 / 1432
页数:25
相关论文
共 34 条
[1]   Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term [J].
Aassila, M ;
Cavalcanti, MM ;
Cavalcanti, VND .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 15 (02) :155-180
[2]  
Alshin A. B., 2011, DEGRUYTER SERIES NON, V15
[3]  
[Anonymous], 1998, T. Mat. I. Imeni V.A.S.
[4]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[5]   General decay rate estimates for viscoelastic dissipative systems [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Martinez, P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :177-193
[6]  
Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
[7]   Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Valeria N. Domingos ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :407-459
[8]   Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Martinez, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (01) :119-158
[9]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[10]   Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation [J].
Feng, Hongyinping ;
Li, Shengjia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :255-264