Minimizing electrostatic interactions from piezoresponse force microscopy via capacitive excitation

被引:5
作者
Zhu, Qingfeng [1 ,2 ]
Esfahani, Ehsan Nasr [1 ,3 ]
Xie, Shuhong [4 ,5 ]
Li, Jiangyu [1 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Peoples R China
[2] Xiangtan Univ, Hunan Prov Key Lab Thin Film Mat & Devices, Xiangtan 411105, Peoples R China
[3] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[4] Xiangtan Univ, Minist Educ, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Peoples R China
[5] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Piezoresponse force microscopy; Electrostatic interactions; Capacitive excitation;
D O I
10.1016/j.taml.2020.01.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Piezoresponse force microscopy (PFM) has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale, yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions. In this letter, we report a capacitive excitation PFM (ce-PFM) to minimize the electrostatic interactions. The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM. The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes, with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM. These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern, and it can be easily implemented in conventional atomic force microscope (AFM) setup to probe true piezoelectricity at the nanoscale. (C) 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.
引用
收藏
页码:23 / 26
页数:4
相关论文
共 31 条
[1]   Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures [J].
Ahn, CH ;
Rabe, KM ;
Triscone, JM .
SCIENCE, 2004, 303 (5657) :488-491
[2]   Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy [J].
Balke, Nina ;
Maksymovych, Petro ;
Jesse, Stephen ;
Herklotz, Andreas ;
Tselev, Alexander ;
Eom, Chang-Beom ;
Kravchenko, Ivan I. ;
Yu, Pu ;
Kalinin, Sergei V. .
ACS NANO, 2015, 9 (06) :6484-6492
[3]   Domains in three-dimensional ferroelectric nanostructures: theory and experiment [J].
Catalan, G. ;
Schilling, A. ;
Scott, J. F. ;
Gregg, J. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (13)
[4]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[5]   Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy [J].
Chen, Qian Nataly ;
Adler, Stuart B. ;
Li, Jiangyu .
APPLIED PHYSICS LETTERS, 2014, 105 (20)
[6]   Mechanisms of electromechanical coupling in strain based scanning probe microscopy [J].
Chen, Qian Nataly ;
Ou, Yun ;
Ma, Feiyue ;
Li, Jiangyu .
APPLIED PHYSICS LETTERS, 2014, 104 (24)
[7]   High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale [J].
Chen, Qian Nataly ;
Ma, Feiyue ;
Xie, Shuhong ;
Liu, Yuanming ;
Proksch, Roger ;
Li, Jiangyu .
NANOSCALE, 2013, 5 (13) :5747-5751
[8]   Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy [J].
Chen, Qian Nately ;
Liu, Yanyi ;
Liu, Yuanming ;
Xie, Shuhong ;
Cao, Guozhong ;
Li, Jiangyu .
APPLIED PHYSICS LETTERS, 2012, 101 (06)
[9]  
Christman JA, 1999, MATER RES SOC SYMP P, V541, P617
[10]   Ferroelectric size effects in multiferroic BiFeO3 thin films [J].
Chu, Y. H. ;
Zhao, T. ;
Cruz, M. P. ;
Zhan, Q. ;
Yang, P. L. ;
Martin, L. W. ;
Huijben, M. ;
Yang, C. H. ;
Zavaliche, F. ;
Zheng, H. ;
Ramesh, R. .
APPLIED PHYSICS LETTERS, 2007, 90 (25)