Smoluchowski equation with a sink term: Analytical solutions for the rate constant and their numerical test

被引:30
|
作者
Berezhkovskii, AM
D'yakov, YA
Zitserman, VY
机构
[1] LY Karpov Phys Chem Res Inst, Moscow 103064, Russia
[2] Russian Acad Sci, Inst High Temp, Moscow 127412, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 1998年 / 109卷 / 11期
关键词
D O I
10.1063/1.477024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Smoluchowski equation with a sink term is widely used as a model of a rate process in a slowly relaxing environment. Two approximate solutions for the rate constant obtained for a steeply growing sink are tested numerically using an exponential sink. Both analytical solutions are in a good agreement with the numerical results over a wide range of the problem parameters (environment relaxation rate). They show how the rate constant Gamma decreases when the viscosity eta of the environment increases. If the dependence is approximated by the fractional power law, Gamma proportional to eta(-alpha), the exponent alpha is always less than unity and depends on eta. It tends to zero for fast relaxation of the environment (small eta) and increases when the relaxation slows down (eta grows). (C) 1998 American Institute of Physics.
引用
收藏
页码:4182 / 4189
页数:8
相关论文
共 50 条
  • [1] Smoluchowski equation with a sink term: analytical solutions for the rate constant and their numerical test
    Karpov Inst of Physical Chemistry, Moscow, Russia
    J Chem Phys, 11 (4182-4189):
  • [2] Dynamic scaling concepts applied to numerical solutions of Smoluchowski's rate equation
    Odriozola, G
    Schmitt, A
    Callejas-Fernández, J
    Martínez-García, R
    Hidalgo-Alvarez, R
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (16): : 7657 - 7667
  • [3] NUMERICAL-SOLUTIONS TO THE SMOLUCHOWSKI AGGREGATION FRAGMENTATION EQUATION
    ELMINYAWI, IM
    GANGOPADHYAY, S
    SORENSEN, CM
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1991, 144 (02) : 315 - 323
  • [4] NONPOWER LAW CONSTANT FLUX SOLUTIONS FOR THE SMOLUCHOWSKI COAGULATION EQUATION
    Ferreira, Marina a.
    Lukkarinen, Jani
    Nota, Alessia
    Velazquez, Juan j. l.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 2783 - 2817
  • [5] Analytical solution in Laplace domain of Smoluchowski equation for a flat potential with a rectangular sink
    Mondal, Proma
    Chakraborty, Aniruddha
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 567
  • [6] Stationary Kolmogorov solutions of the Smoluchowski aggregation equation with a source term
    Connaughton, C
    Rajesh, R
    Zaboronski, O
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [7] RATE OF CONVERGENCE TO SELF-SIMILARITY FOR SMOLUCHOWSKI'S COAGULATION EQUATION WITH CONSTANT COEFFICIENTS
    Canizo, Jose A.
    Mischler, Stephane
    Mouhot, Clement
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 41 (06) : 2283 - 2314
  • [8] Finite element solution of the steady-state Smoluchowski equation for rate constant calculations
    Song, YH
    Zhang, YJ
    Shen, TY
    Bajaj, CL
    McCammon, A
    Baker, NA
    BIOPHYSICAL JOURNAL, 2004, 86 (04) : 2017 - 2029
  • [9] Analytical and numerical solutions for a special nonlinear equation
    Fard, Hossein Sahebi
    Dastranj, Elham
    Hejazi, Reza
    Jajarmi, Amin
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (01)
  • [10] Analytical and Numerical Solutions to the Kapitza Pendulum Equation
    Salas, Alvaro H.
    Castillo, Jairo E.
    Martinez, Lorenzo J. H.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (04): : 1529 - 1534