Quantum versus classical annealing of Ising spin glasses

被引:171
作者
Heim, Bettina [1 ]
Ronnow, Troels F. [1 ]
Isakov, Sergei V. [2 ]
Troyer, Matthias [1 ]
机构
[1] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Google, CH-8002 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
OPTIMIZATION; ALGORITHM; MODEL;
D O I
10.1126/science.aaa4170
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum annealers use quantum fluctuations to escape local minima and find low-energy configurations of a physical system. Strong evidence for superiority of quantum annealing (QA) has come from comparing QA implemented through quantum Monte Carlo (QMC) simulations to classical annealing. Motivated by recent experiments, we revisit the question of when quantum speedup may be expected. Although a better scaling is seen for QA in two-dimensional Ising spin glasses, this advantage is due to time discretization artifacts and measurements that are not possible on a physical quantum annealer. Simulations in the physically relevant continuous time limit, on the other hand, do not show superiority. Our results imply that care must be taken when using QMC simulations to assess the potential for quantum speedup.
引用
收藏
页码:215 / 217
页数:3
相关论文
共 26 条
[1]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[2]   SIMULATED ANNEALING [J].
BERTSIMAS, D ;
TSITSIKLIS, J .
STATISTICAL SCIENCE, 1993, 8 (01) :10-15
[3]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
[4]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[5]   Efficient program synthesis using constraint satisfaction in inductive logic programming [J].
Ahlgren, John ;
Yuen, Shiu Yin .
2013, Microtome Publishing (14) :3649-3681
[6]   Colloquium: Quantum annealing and analog quantum computation [J].
Das, Amab ;
Chakrabarti, Bikas K. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :1061-1081
[7]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[8]   QUANTUM ANNEALING - A NEW METHOD FOR MINIMIZING MULTIDIMENSIONAL FUNCTIONS [J].
FINNILA, AB ;
GOMEZ, MA ;
SEBENIK, C ;
STENSON, C ;
DOLL, JD .
CHEMICAL PHYSICS LETTERS, 1994, 219 (5-6) :343-348
[9]   BOUNDS FOR CERTAIN MULTIPROCESSING ANOMALIES [J].
GRAHAM, RL .
BELL SYSTEM TECHNICAL JOURNAL, 1966, 45 (09) :1563-+
[10]   Quantum annealing with manufactured spins [J].
Johnson, M. W. ;
Amin, M. H. S. ;
Gildert, S. ;
Lanting, T. ;
Hamze, F. ;
Dickson, N. ;
Harris, R. ;
Berkley, A. J. ;
Johansson, J. ;
Bunyk, P. ;
Chapple, E. M. ;
Enderud, C. ;
Hilton, J. P. ;
Karimi, K. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Oh, T. ;
Perminov, I. ;
Rich, C. ;
Thom, M. C. ;
Tolkacheva, E. ;
Truncik, C. J. S. ;
Uchaikin, S. ;
Wang, J. ;
Wilson, B. ;
Rose, G. .
NATURE, 2011, 473 (7346) :194-198