Mechanical behaviors of nanowires

被引:72
作者
Chen, Yujie [1 ,2 ]
An, Xianghai [1 ]
Liao, Xiaozhou [1 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
TRANSMISSION ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; TO-DUCTILE TRANSITION; SURFACE DISLOCATION NUCLEATION; SINGLE-CRYSTALLINE NANOWIRES; INDIUM-PHOSPHIDE NANOWIRES; COHERENT-TWIN-PROPAGATION; AMORPHOUS SIO2 NANOWIRES; ATOMIC-SCALE OBSERVATION; LARGE-STRAIN PLASTICITY;
D O I
10.1063/1.4989649
中图分类号
O59 [应用物理学];
学科分类号
摘要
The mechanical behaviors of nanowires (NWs) are significantly different from those of their bulk materials because of their small dimensions. Determining the mechanical performance of NWs and understanding their deformation behavior are crucial for designing and manufacturing NW-based devices with predictable and reproducible operation. Owing to the difficulties to manipulate these nanoscale materials, nanomechanical testing of NWs is always challenging, and errors can be readily introduced in the measured mechanical data. Here, we survey the techniques that have been developed to quantify the mechanical properties and to understand the deformation mechanisms of NWs. We also provide a general review of the mechanical properties and deformation behaviors of NWs and discuss possible sources responsible for the discrepancy of measured mechanical properties. The effects of planar defects on the mechanical behavior of NWs are also reviewed. Published by AIP Publishing.
引用
收藏
页数:29
相关论文
共 257 条
[1]   Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study [J].
Abramson, AR ;
Tien, CL ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (05) :963-970
[2]   Strengthening in gold nanopillars with nanoscale twins [J].
Afanasyev, Konstantin A. ;
Sansoz, Frederic .
NANO LETTERS, 2007, 7 (07) :2056-2062
[3]   PLASTIC-DEFORMATION OF NANOMETER-SCALE GOLD CONNECTIVE NECKS [J].
AGRAIT, N ;
RUBIO, G ;
VIEIRA, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :3995-3998
[4]   Elasticity Size Effects in ZnO Nanowires-A Combined Experimental-Computational Approach [J].
Agrawal, Ravi ;
Peng, Bei ;
Gdoutos, Eleftherios E. ;
Espinosa, Horacio D. .
NANO LETTERS, 2008, 8 (11) :3668-3674
[5]   Strain-induced metal-insulator phase coexistence in perovskite manganites [J].
Ahn, KH ;
Lookman, T ;
Bishop, AR .
NATURE, 2004, 428 (6981) :401-404
[6]   Thermal stability of sputtered Cu films with nanoscale growth twins [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Zhang, X. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)
[7]   Epitaxial nanotwinned Cu films with high strength and high conductivity [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Ronning, F. ;
Hundley, M. F. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[8]  
Anderson P.M., 2017, Theory of Dislocations
[9]   The determination of Young's modulus in noble metal nanowires [J].
Ao, Z. M. ;
Li, S. ;
Jiang, Q. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[10]   In situ observation of size-scale effects on the mechanical properties of ZnO nanowires [J].
Asthana, A. ;
Momeni, K. ;
Prasad, A. ;
Yap, Y. K. ;
Yassar, R. S. .
NANOTECHNOLOGY, 2011, 22 (26)