Two-dimensional Electron Gas at Thiol/ZnO Interface

被引:0
|
作者
Ozawa, Kenichi [1 ]
Mase, Kazuhiko [2 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Chem, Meguro Ku, Tokyo 1528551, Japan
[2] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan
[3] SOKENDAI, Tsukuba, Ibaraki 3050801, Japan
关键词
2DEG; ARPES; ZnO; Thiol; Organic/oxide interface; QUANTIZED ACCUMULATION LAYERS; ZNO; ADSORPTION; ZNO(0001)-ZN; ETHANETHIOL; SURFACE;
D O I
10.1380/ejssnt.2020.41
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electronic modification of O-terminated ZnO(000 (1) over bar) and Zn-terminated ZnO(0001) by ethanethiol (C2H5SH) adsorption was investigated by angle-resolved photoelectron spectroscopy (ARPES) and X-ray photoelectron spectroscopy (XPS). Ethanethiol dissociates on both surfaces at room temperature to form C2H5S and H. The saturation coverage of ethanethiol is nearly three times larger on ZnO(0001) than on ZnO(000 (1) over bar). This suggests that Zn atoms exposed to the surface should act as adsorption and dissociation sites. Adsorption on the (000 (1) over bar) surface induces large downward band bending and accompanies a Zn 4s-derived metallic state at the center of the surface Brillouin zone. This proves that ethanethiol is a good electron donor on ZnO(000 (1) over bar). Contrastingly, ethanethiol on ZnO(0001) hardly affects the energetic position of the ZnO band so that surface metallization is not brought about.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 50 条
  • [1] Polarization-Induced Two-Dimensional electron gas at BeO/ZnO interface
    Jang, Yoonseo
    Jung, Dohwan
    Sultane, Prakash R.
    Bielawski, Christopher W.
    Oh, Jungwoo
    APPLIED SURFACE SCIENCE, 2022, 600
  • [2] Two-dimensional electron or hole gas at ZnO/6H-SiC interface
    Lu, Y. H.
    Xu, B.
    Wu, R. Q.
    Feng, Y. P.
    APPLIED PHYSICS LETTERS, 2010, 96 (19)
  • [3] Two-dimensional electron Gas in ZnMgO/ZnO heterostructures
    Zhang Yang
    Gu Shu-Lin
    Ye Jian-Dong
    Huang Shi-Min
    Gu Ran
    Chen Bin
    Zhu Shun-Ming
    Zhen You-Dou
    ACTA PHYSICA SINICA, 2013, 62 (15)
  • [4] Enhanced thermopower in ZnO two-dimensional electron gas
    Shimizu, Sunao
    Bahramy, Mohammad Saeed
    Iizuka, Takahiko
    Ono, Shimpei
    Miwa, Kazumoto
    Tokura, Yoshinori
    Iwasa, Yoshihiro
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (23) : 6438 - 6443
  • [5] Kapitza Resistance at the Two-Dimensional Electron Gas Interface
    Wilson, Adam A.
    Jankowski, Nicholas R.
    Nouketcha, Franklin
    Tompkins, Randy
    PROCEEDINGS OF THE 2019 EIGHTEENTH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2019), 2019, : 766 - 771
  • [6] Origin and transport properties of two-dimensional electron gas at ZnMgO/ZnO interface grown by MOVPE
    Ye, Jiandong
    Ter Lim, Sze
    Gu, Shulin
    Tan, H. Hoe
    Jagadish, Chennupati
    Teo, Kie Leong
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 10, 2013, 10 (10): : 1268 - 1271
  • [7] Creation of a two-dimensional electron gas at an oxide interface on silicon
    J.W. Park
    D.F. Bogorin
    C. Cen
    D.A. Felker
    Y. Zhang
    C.T. Nelson
    C.W. Bark
    C.M. Folkman
    X.Q. Pan
    M.S. Rzchowski
    J. Levy
    C.B. Eom
    Nature Communications, 1
  • [8] Creation of a two-dimensional electron gas at an oxide interface on silicon
    Park, J. W.
    Bogorin, D. F.
    Cen, C.
    Felker, D. A.
    Zhang, Y.
    Nelson, C. T.
    Bark, C. W.
    Folkman, C. M.
    Pan, X. Q.
    Rzchowski, M. S.
    Levy, J.
    Eom, C. B.
    NATURE COMMUNICATIONS, 2010, 1
  • [9] Scanning tunneling spectroscopy of a two-dimensional electron gas on the surface of ZnO
    Wolovelsky, M
    Goldstein, Y
    Millo, O
    PHYSICAL REVIEW B, 1998, 57 (11): : 6274 - 6277
  • [10] Two-dimensional electron gas related emissions in ZnMgO/ZnO heterostructures
    Chen, Hui
    Gu, Shulin
    Liu, Jiagao
    Ye, Jiandong
    Tang, Kun
    Zhu, Shunming
    Zheng, Youdou
    APPLIED PHYSICS LETTERS, 2011, 99 (21)