A direct approach to convergence of multivariate, nonhomogeneous, Pade approximants

被引:10
作者
Cuyt, A
Driver, KA
Lubinsky, DS
机构
[1] UNIV ANTWERP, DEPT MATH, B-2610 WILRIJK, BELGIUM
[2] UNIV WITWATERSRAND, DEPT MATH, WITWATERSRAND 2050, SOUTH AFRICA
[3] NFWO, BRUSSELS, BELGIUM
关键词
multivariate Pade approximants; nonhomogeneous approximants; Nuttall-Pommerenke theorems;
D O I
10.1016/0377-0427(95)00044-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a direct approach for proving convergence in measure/product capacity of multivariate, nonhomogeneous, Pade approximants. Previous approaches have involved projection onto Pade-type approximation in one variable, and only yielded convergence in (Lebesgue) measure.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 26 条
[1]   MULTIVARIATE PARTIAL NEWTON-PADE AND NEWTON-PADE TYPE APPROXIMANTS [J].
ABOUIR, J ;
CUYT, A .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (03) :301-316
[2]  
ABOUIR J, IN PRESS J APPROX TH
[3]  
[Anonymous], PADE RATIONAL APPROX
[4]  
[Anonymous], 1975, Essentials of Pade Approximations
[5]  
BAKER GA, 1981, ENCY MATH APPL, V13
[6]  
CEGRELL U, 1988, CAPACITIES COMPLEX
[7]  
CHAFFY C, 1984, THESIS GRENOBLE POLY
[8]  
CIRKA EM, 1974, MATH USSR SB, V22, P323
[9]   Nuttall-Pommerenke theorems for homogeneous Pade approximants [J].
Cuyt, A ;
Driver, K ;
Lubinsky, DS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) :141-146
[10]  
CUYT A, 1992, NATO ADV SCI I C-MAT, V356, P41