φ∈-Coordinated modules for vertex algebras

被引:9
作者
Bai, Chengming [1 ,2 ]
Li, Haisheng [3 ]
Pei, Yufeng [4 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[4] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
关键词
Vertex algebras; Formal group; Coordinated modules; Lie algebras; Novikov algebras; QUASIFINITE MODULES; LIE-ALGEBRA;
D O I
10.1016/j.jalgebra.2014.11.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study phi(is an element of)-coordinated modules for vertex algebras, where phi(is an element of) with is an element of an integer parameter is a family of associates of the one-dimensional additive formal group. As the main results, we obtain a Jacobi type identity and a commutator formula for phi(is an element of)-coordinated modules. We then use these results to study phi(is an element of)-coordinated modules for vertex algebras associated to Novikov algebras by Primc. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 242
页数:32
相关论文
共 42 条
[1]  
Arnold V. I., 1989, ser. Graduate texts in Mathematics, V60, DOI 10.1007/978-1-4757-2063-1
[2]  
Bai C., 2003, PREPRINT
[3]  
Bakalov B, 2003, INT MATH RES NOTICES, V2003, P123
[4]   THE STRUCTURE OF THE W-INFINITY ALGEBRA [J].
BAKAS, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (03) :487-508
[5]  
Balinsky A., 1985, Sov. Math. Dokl, V32, P228
[6]   ON THE ALGEBRAIC STRUCTURES CONNECTED WITH THE LINEAR POISSON BRACKETS OF HYDRODYNAMICS TYPE [J].
BALINSKY, AA ;
BALINSKY, AI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :L361-L364
[7]  
Block R., 1958, Proc. Am. Math. Soc., V9, P613
[8]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[9]   Chiral deformations of conformal field theories [J].
Dijkgraaf, R .
NUCLEAR PHYSICS B, 1997, 493 (03) :588-612
[10]  
Dokovic D., 1996, ALGEBR COLLOQ, V3, P245