Existence for Time-Fractional Semilinear Diffusion Equation on the Sphere

被引:0
|
作者
Phuong, N. D. [1 ]
Ho Duy Binh [2 ]
Ho Thi Kim Van [2 ]
Le Dinh Long [2 ]
机构
[1] Ind Univ Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City 700000, Vietnam
[2] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
关键词
ELLIPTIC PDES; APPROXIMATION;
D O I
10.1155/2021/6370636
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional diffusion on the sphere plays a large role in the study of physical phenomena customs and meteorology and geophysics. In this paper, we examine two types of the sphere problem: the initial value problem and the end value problem. We are interested in focus on the solution existence in a local or global form. In order to overcome difficult evaluations when evaluating, we need some new techniques. The main analytical tool is the use of the Banach fixed point theorem.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Time-fractional diffusion equation for signal smoothing
    Li, Yuanlu
    Liu, Fawang
    Turner, Ian W.
    Li, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 326 : 108 - 116
  • [22] Time-fractional diffusion equation with ψ-Hilfer derivative
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [23] Galerkin Type Methods for Semilinear Time-Fractional Diffusion Problems
    Samir Karaa
    Journal of Scientific Computing, 2020, 83
  • [24] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [25] Uniqueness of the potential in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (04): : 467 - 477
  • [26] Symmetry classification of time-fractional diffusion equation
    Naeem, I.
    Khan, M. D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 560 - 570
  • [27] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [28] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [29] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [30] On the maximum principle for a time-fractional diffusion equation
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2017, 20 : 1131 - 1145