Describing the Brain in Autism in Five Dimensions-Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach

被引:301
作者
Ecker, Christine [1 ]
Marquand, Andre [2 ]
Mourao-Miranda, Janaina [3 ,4 ]
Johnston, Patrick [1 ]
Daly, Eileen M. [1 ]
Brammer, Michael J. [2 ]
Maltezos, Stefanos [1 ]
Murphy, Clodagh M. [1 ]
Robertson, Dene [1 ]
Williams, Steven C. [3 ]
Murphy, Declan G. M. [1 ]
机构
[1] Kings Coll London, Sect Brain Maturat, Dept Psychol Med, Inst Psychiat, London SE5 8AF, England
[2] Kings Coll London, Brain Image Anal Unit, Dept Biostat, Inst Psychiat, London SE5 8AF, England
[3] Kings Coll London, Ctr Neuroimaging Sci, Inst Psychiat, London SE5 8AF, England
[4] UCL, Dept Comp Sci, Ctr Computat Stat & Machine Learning, London WC1E 6BT, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
HUMAN CEREBRAL-CORTEX; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; GEOMETRICALLY ACCURATE; ALZHEIMERS-DISEASE; GENETIC INFLUENCES; STRUCTURAL MRI; SEGMENTATION; SYSTEM; SCHIZOPHRENIA;
D O I
10.1523/JNEUROSCI.5413-09.2010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e. g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
引用
收藏
页码:10612 / 10623
页数:12
相关论文
共 57 条
  • [1] Neuroanatomy of autism
    Amaral, David G.
    Schumann, Cynthia Mills
    Nordahl, Christine Wu
    [J]. TRENDS IN NEUROSCIENCES, 2008, 31 (03) : 137 - 145
  • [2] [Anonymous], PROG BRAIN RES
  • [3] [Anonymous], 1992, INT STAT CLASS DIS H
  • [4] THE ONTOGENY OF HUMAN GYRIFICATION
    ARMSTRONG, E
    SCHLEICHER, A
    OMRAN, H
    CURTIS, M
    ZILLES, K
    [J]. CEREBRAL CORTEX, 1995, 5 (01) : 56 - 63
  • [5] Neural correlations, population coding and computation
    Averbeck, BB
    Latham, PE
    Pouget, A
    [J]. NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) : 358 - 366
  • [6] Barkley R.A., 2006, Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment, V3
  • [7] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [8] Chung MK, 2005, LECT NOTES COMPUT SC, V3565, P627
  • [9] Cortical surface-based analysis - I. Segmentation and surface reconstruction
    Dale, AM
    Fischl, B
    Sereno, MI
    [J]. NEUROIMAGE, 1999, 9 (02) : 179 - 194
  • [10] Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    Davatzikos, Christos
    Fan, Yong
    Wu, Xiaoying
    Shen, Dinggang
    Resnick, Susan M.
    [J]. NEUROBIOLOGY OF AGING, 2008, 29 (04) : 514 - 523