First-principles molecular dynamics study of deuterium diffusion in liquid tin

被引:8
作者
Liu, Xiaohui [1 ,2 ]
Zheng, Daye [1 ,2 ]
Ren, Xinguo [1 ,2 ]
He, Lixin [1 ,2 ]
Chen, Mohan [3 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
SELF-DIFFUSION; ELECTRON-GAS; LITHIUM; TEMPERATURE; COMPRESSIBILITY; SIMULATIONS; DEPENDENCE; SCATTERING; PRESSURE; SURFACES;
D O I
10.1063/1.4997635
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the retention of hydrogen isotopes in liquid metals, such as lithium and tin, is of great importance in designing a liquid plasma-facing component in fusion reactors. However, experimental diffusivity data of hydrogen isotopes in liquid metals are still limited or controversial. We employ first-principles molecular dynamics simulations to predict diffusion coefficients of deuterium in liquid tin at temperatures ranging from 573 to 1673 K. Our simulations indicate faster diffusion of deuterium in liquid tin than the self-diffusivity of tin. In addition, we find that the structural and dynamic properties of tin are insensitive to the inserted deuterium at temperatures and concentrations considered. We also observe that tin and deuterium do not form stable solid compounds. These predicted results from simulations enable us to have a better understanding of the retention of hydrogen isotopes in liquid tin. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 62 条
[1]   Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation [J].
Abrams, T. ;
Jaworski, M. A. ;
Chen, M. ;
Carter, E. A. ;
Kaita, R. ;
Stotler, D. P. ;
De Temmerman, G. ;
Morgan, T. W. ;
van den Berg, M. A. ;
van der Meiden, H. J. .
NUCLEAR FUSION, 2016, 56 (01)
[2]   Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment [J].
Abrams, T. ;
Jaworski, M. A. ;
Kaita, R. ;
Nichols, J. H. ;
Stotler, D. P. ;
De Temmerman, G. ;
van den Berg, M. A. ;
van der Meiden, H. J. ;
Morgan, T. W. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :1169-1172
[3]   First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results [J].
Aguado, A .
PHYSICAL REVIEW B, 2003, 67 (21)
[4]  
Barrett C., 1966, STRUCTURE METALS
[5]   Self-diffusion in liquid lithium from coherent quasielastic neutron scattering [J].
Blagoveshchenskii, N. M. ;
Novikov, A. G. ;
Savostin, V. V. .
PHYSICA B-CONDENSED MATTER, 2012, 407 (23) :4567-4569
[6]   MELTING TEMPERATURE, ADIABATS, AND GRUNEISEN-PARAMETER OF LITHIUM, SODIUM AND POTASSIUM VERSUS PRESSURE [J].
BOEHLER, R .
PHYSICAL REVIEW B, 1983, 27 (11) :6754-6762
[7]  
Brandes EA., 2004, SMITHELLS METALS REF
[8]   Modeling of sputtering erosion/redeposition - status and implications for fusion design [J].
Brooks, JN .
FUSION ENGINEERING AND DESIGN, 2002, 60 (04) :515-526
[9]   DIFFUSION-COEFFICIENT OF SN-113, SB-124, AG-110M, AND AU-195 IN LIQUID SN [J].
BRUSON, A ;
GERL, M .
PHYSICAL REVIEW B, 1980, 21 (12) :5447-5454
[10]   RAMAN SCATTERING IN GRAY TIN [J].
BUCHENAU.CJ ;
CARDONA, M ;
POLLAK, FH .
PHYSICAL REVIEW B, 1971, 3 (04) :1243-&