The granule-bound starch synthase (GBSSI) gene in the rosaceae: Multiple loci and phylogenetic utility

被引:91
作者
Evans, RC
Alice, LA
Campbell, CS
Kellogg, EA
Dickinson, TA
机构
[1] Royal Ontario Museum, Ctr Biodivers & Conservat Biol, Toronto, ON M5S 2C6, Canada
[2] Univ Toronto, Dept Bot, Toronto, ON, Canada
[3] Western Kentucky Univ, Dept Biol, Bowling Green, KY 42101 USA
[4] Univ Maine, Dept Biol Sci, Orono, ME USA
[5] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[6] Univ Missouri, Dept Biol, St Louis, MO 63121 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/mpev.2000.0828
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We sampled the 5' end of the granule-bound starch synthase gene (GBSSI or waxy) in Rosaceae, sequencing 108 clones from 18 species in 14 genera representing all four subfamilies (Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae), as well as four clones from Rhamnus catharticus (Rhamnaceae). This is the first phylogenetic study to use the 5' portion of this nuclear gene. Parsimony and maximum-likelihood analyses of 941 bases from seven complete and two partial exons demonstrate the presence of two loci (GBSSI-1 and GBSSI-2) in the Rosaceae. Southern hybridization analyses with locus-specific probes confirm that all four Rosaceae subfamilies have at least two GBSSI loci, even though only one locus has been reported in all previously studied diploid flowering plants. Phylogenetic analyses also identify four clades representing four loci in the Maloideae. Phylogenetic relationships inferred from GBSSI sequences are largely compatible with those from chloroplast (cpDNA: ndhF, rbcL) and nuclear ribosomal internal transcribed spacer (nrITS) DNA. Large clades are marked by significant intron variation: a long first intron plus no sixth intron in Maloideae GBSSI-1, a long fourth intron in Rosoideae GBSSI-1, and a GT to GC mutation in the 5' splice site of the fourth intron in all GBSSI-2 sequences. Our data do not support the long-held hypothesis that Maloideae originated from an ancient hybridization between amygdaloid and spiraeoid ancestors. Instead, Spiraeoideae genera (Kageneckia and Vauquelinia) are their closest relatives in all four GBSSI clades. (C) 2000 Academic Press.
引用
收藏
页码:388 / 400
页数:13
相关论文
共 54 条
[1]   Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences [J].
Alice, LA ;
Campbell, CS .
AMERICAN JOURNAL OF BOTANY, 1999, 86 (01) :81-97
[2]  
ALICE LA, 1997, THESIS U MAINE ORONO
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   The allopolyploid origin of kiwifruit, Actinidia deliciosa (Actinidiaceae) [J].
Atkinson, RG ;
Cipriani, G ;
Whittaker, DJ ;
Gardner, RC .
PLANT SYSTEMATICS AND EVOLUTION, 1997, 205 (1-2) :111-124
[5]   Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants:: Comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae [J].
Bailey, CD ;
Doyle, JJ .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 1999, 13 (01) :20-30
[6]  
BREMER K, 1988, EVOLUTION, V42, P795, DOI [10.2307/2408870, 10.1111/j.1558-5646.1988.tb02497.x]
[7]   PHYLOGENETIC-RELATIONSHIPS IN MALOIDEAE (ROSACEAE) - EVIDENCE FROM SEQUENCES OF THE INTERNAL TRANSCRIBED SPACERS OF NUCLEAR RIBOSOMAL DNA AND ITS CONGRUENCE WITH MORPHOLOGY [J].
CAMPBELL, CS ;
DONOGHUE, MJ ;
BALDWIN, BG ;
WOJCIECHOWSKI, MF .
AMERICAN JOURNAL OF BOTANY, 1995, 82 (07) :903-918
[8]   Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae) [J].
Campbell, CS ;
Wojciechowski, MF ;
Baldwin, BG ;
Alice, LA ;
Donoghue, MJ .
MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (01) :81-90
[9]   PHYLOGENETICS OF SEED PLANTS - AN ANALYSIS OF NUCLEOTIDE-SEQUENCES FROM THE PLASTID GENE RBCL [J].
CHASE, MW ;
SOLTIS, DE ;
OLMSTEAD, RG ;
MORGAN, D ;
LES, DH ;
MISHLER, BD ;
DUVALL, MR ;
PRICE, RA ;
HILLS, HG ;
QIU, YL ;
KRON, KA ;
RETTIG, JH ;
CONTI, E ;
PALMER, JD ;
MANHART, JR ;
SYTSMA, KJ ;
MICHAELS, HJ ;
KRESS, WJ ;
KAROL, KG ;
CLARK, WD ;
HEDREN, M ;
GAUT, BS ;
JANSEN, RK ;
KIM, KJ ;
WIMPEE, CF ;
SMITH, JF ;
FURNIER, GR ;
STRAUSS, SH ;
XIANG, QY ;
PLUNKETT, GM ;
SOLTIS, PS ;
SWENSEN, SM ;
WILLIAMS, SE ;
GADEK, PA ;
QUINN, CJ ;
EGUIARTE, LE ;
GOLENBERG, E ;
LEARN, GH ;
GRAHAM, SW ;
BARRETT, SCH ;
DAYANANDAN, S ;
ALBERT, VA .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1993, 80 (03) :528-580
[10]   Simple methods for isolating homeologous loci from allopolyploid genomes [J].
Cronn, R ;
Wendel, JF .
GENOME, 1998, 41 (06) :756-762