Optimal shift invariant spaces and their Parseval frame generators

被引:22
|
作者
Aldroubi, Akrarn
Cabrelli, Carlos
Hardin, Douglas
Molter, Ursula
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
D O I
10.1016/j.acha.2007.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a set of functions F= {f(1), . . . , f(m)}subset of L-2(R-d) we study the problem of finding the shift-invariant space V with n generators {phi(1), . . ., phi(n)} that is "closest" to the functions of F in the sense that [Graphics] where omega(i) are positive weights, and V-n is the set of all shift-invariant spaces that can be generated by n or less generators. The Eckart-Young theorem uses the singular value decomposition to provide a solution to a related problem in finite dimension. We transform the problem under study into an uncountable set of finite dimensional problems each of which can be solved using an extension of the Eckart-Young theorem. We prove that the finite dimensional solutions can be patched together and transformed to obtain the optimal shift-invariant space solution to the original problem, and we produce a Parseval frame for the optimal space. A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g., the class of chest X-rays), from the observation of a set of m signals or images f(1),..., f(m), which may be theoretical samples, or experimental data. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [1] MULTI-CHANNEL SAMPLING ON SHIFT-INVARIANT SPACES WITH FRAME GENERATORS
    Garcia, A. G.
    Kim, J. M.
    Kwon, K. H.
    Yoon, G. J.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (01)
  • [2] Affine frame decompositions and shift-invariant spaces
    Chui, CK
    Sun, QY
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (01) : 74 - 107
  • [3] Perturbation of frame sequences in shift-invariant spaces
    O. Christensen
    H. O. Kim
    R. Y. Kim
    J. K. Lim
    The Journal of Geometric Analysis, 2005, 15 : 181 - 192
  • [4] Perturbation of frame sequences in shift-invariant spaces
    Christensen, O
    Kim, HO
    Kim, RY
    Lim, JK
    JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (02) : 181 - 192
  • [5] Approximation from shift-invariant spaces with smooth generators
    Selvan, A. Antony
    Bhandari, Ayush
    Radha, R.
    NUMERICAL ALGORITHMS, 2025,
  • [6] Invertibility of Laurent operators and shift invariant spaces with finitely many generators
    Radha, R.
    Sarvesh, K.
    Sivananthan, S.
    APPLICABLE ANALYSIS, 2020, 99 (16) : 2854 - 2876
  • [7] Generalized sampling in shift-invariant spaces with multiple stable generators
    Garcia, A. G.
    Hernandez-Medina, M. A.
    Perez-Villalon, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 69 - 84
  • [8] Perturbation of frame sequences and its applications to shift-invariant spaces
    Koo, Yoo Young
    Lim, Jae Kun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 295 - 309
  • [9] Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces
    Benac, Maria J.
    Massey, Pedro G.
    Stojanoff, Demetrio
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 401 - 441
  • [10] Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces
    María J. Benac
    Pedro G. Massey
    Demetrio Stojanoff
    Journal of Fourier Analysis and Applications, 2017, 23 : 401 - 441