On the energy functionals derived from a non-homogeneous p-Laplacian equation: Γ-convergence, local minimizers and stable transition layers

被引:2
作者
Hurtado, Elard J. [1 ]
Sonego, Maicon [2 ]
机构
[1] UNESP Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[2] Univ Fed Itajuba IMC, BR-37500903 Itajuba, MG, Brazil
关键词
p-Laplacian; Stability; Gamma-convergence; Local minimizer; Transition layer; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; BOUND-STATES; EXISTENCE; MULTIPLICITY; REGULARITY; GROWTH;
D O I
10.1016/j.jmaa.2019.123634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a family of singularly perturbed non-homogeneous p-Laplacian problems is an element of(p) div(k(x)vertical bar del u vertical bar(P-2) del u) + k(x)g(u) = 0 in Omega subset of R-n subject to Neumann boundary conditions. We establish the Gamma-convergence of the energy functionals associate to this family of problems. As an application, we obtain the existence and profile asymptotic of a family of local minimizers in the one-dimensional case (i.e. Omega = (0, 1)). In particular, these minimizers are stable solutions which develop inner transition layer in (0,1). (C) 2019 Published by Elsevier Inc.
引用
收藏
页数:13
相关论文
共 39 条
[21]  
do O JM, 2001, J DIFFER EQUATIONS, V174, P289, DOI 10.1006/jdeq.2000.3946
[22]  
Draliek P., 1997, QUASILINEAR ELLIPTIC
[23]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[24]  
FEDERER H, 1969, GEOMETRIC MEASURE TH, V153
[25]   Positive Solutions for a Quasilinear Schrodinger Equation with Critical Growth [J].
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) :13-28
[26]   NONSPREADING WAVE-PACKETS FOR THE CUBIC SCHRODINGER-EQUATION WITH A BOUNDED POTENTIAL [J].
FLOER, A ;
WEINSTEIN, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :397-408
[27]  
Giusti E., 1984, MINIMAL SURFACES FUN
[28]   Existence and Asymptotic Behaviour for a Kirchhoff Type Equation With Variable Critical Growth Exponent [J].
Hurtado, Elard Juarez ;
Miyagaki, Olimpio Hiroshi ;
Rodrigues, Rodrigo da Silva .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (01) :71-102
[29]   LOCAL MINIMIZERS AND SINGULAR PERTURBATIONS [J].
KOHN, RV ;
STERNBERG, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :69-84
[30]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219