Distortion-Invariant Target Recognition Based on Multi channel Joint Transform Correlator

被引:0
作者
Lin Chao [1 ]
Han Yanli [1 ]
Lou Shuli [2 ]
Liu Pei [1 ]
Zhang Wenlong [3 ]
Yang Zikang [3 ]
机构
[1] Naval Aviat Univ, Sch Aviat Operat & Support, Yantai 264000, Shandong, Peoples R China
[2] Yantai Univ, Sch Optoelect Informat Sci & Technol, Yantai 264000, Shandong, Peoples R China
[3] Unit 92485 PLA, Dalian 116041, Liaoning, Peoples R China
来源
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG | 2022年 / 49卷 / 13期
关键词
information processing; optical pattern recognition; multiple channeled joint transform correlator; synthetic discriminant function; distortion-invariant pattern recognition; IMPLEMENTATION; SCALE; IMAGE; PHASE;
D O I
10.3788/CJL202249.1309001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
ObjectiveWiththeadventofthebigdataandintelligenceerasinformationsystemsrequireconsiderablyenhancedperformanceandlowenergycostsOpticalcomputingmaybecomethenext-generationcomputingplatformowingtoitsparallelprocessingcapabilityandhighbandwidthwithlowenergyconsumptionInpatternrecognitionapplicationslargeamountsofimagedatamustberapidlyprocessedTwotypesofopticalapproacheshavebeeninvestigatedforpatternrecognitionopticalneuralnetworkwhichcomprisestwosubclassesincludingsiliconphotonic-basedneuralnetworksandfree-space-basedopticalnetworkTheformerhasundergoneconsiderableadvancementsrecentlyowingtoimprovedfabricationcapabilityandnovelnetworkcomponentsbasedonopticssuchasmicroringresonatorsandMach-ZehnderinterferometersThelatteregdiffractiveneuralnetworksisalsoimportantparticularlyforcomputationalimaging-basedapplicationsHoweveropticalneuralnetwork-basedpatternrecognitionapproachesareimmatureowingtotheimplementationofnonlinearfunctionsPatternrecognitionapproachesfoundedonfree-space-basedopticalnetworksarehybridoptoelectroniccorrelatorsfarmorematurethanopticalneuralnetwork-basedonesThecorrelatorcanbecodesignedwithaneuralnetworktoserveasacoprocessertoprefiltersomeimagefeaturesforultrafastprocessingHoweverinconventionalopticalcorrelatorsboththespatialandspectralbandwidthsofsystemshavenotbeenefficientlyusedwhenperformingthecorrelationoperationHencetheinherentparallelprocessingcapabilityofopticscannotbefullyexploited. MethodsInourpreviousworkamultichanneljointtransformcorrelationmethodisproposedbasedonthecompressionandtranslationofjointtransformpowerspectrumtofullyutilizespatialandspectralbandwidthsandenhancetheparallelprocessingefficiencyandrecognitionaccuracyofopticalcorrelationsystemsIntheinputplaneofthisschemethescene imageandNnumbersofreferenceimagesareuploadedondifferentzonesoftheinputspatiallightmodulatorthenthephasemapsoptimizedusingtheiterativealgorithmaresuperimposedontotheimagesIntheFourierplaneinterferencebetweentheFourierspectraofsceneimagesandthoseofeverysinglereferenceimageoccursindifferentzonesoftheFourierplaneWhentherestrictionparameterinthephaseoptimizationalgorithmisappropriatedadjustednointerferenceoftheFourierspectraofthereferenceimagesisobservedConsequentlytheparallelprocessingofNchannelsisachievedwithoutcrosstalkTherelationbetweenthelocalizedpeakcluttermeanoftheFourierspectraofthepreferredphaseandthestandarddeviationofthecorrelationpeakpositionisanalyzedandusedasacriterionforpreferentialpreferredphasemaskselectionFurthermorethestandarddeviationofthecorrelationpeakpositionisobtainedforrecognitiontasksInthisstudywefocusondistortion-invariantpatternrecognitionbyintegratingthemultichanneljointtransformcorrelatorandthesyntheticdiscriminantfunctionFirstthefeasibilityofthelocalpeaktocluttermeanasaconstraintforpreferentialphaseselectionisanalyzedresultsindicatedthatthisfactorisnotappropriatewhenthesyntheticdiscriminantfunctionisusedHenceanewphaseselectioncriterion-knownasthevariationinthecorrelationpeakposition-isproposedtoobtainthepublicpreferredphasefortargetswithaspecificdistortionrangeFurthermoretheselectedphaseisusedinthemultichanneljointtransformcorrelatorwiththesyntheticdiscriminantfunctiontoachievedistortion-invariantpatternrecognitionThentodeterminethesystemperformanceintermsofthedistortionlevelthetoleranceofoursystemonthescaling-downofthesizeoftargetandtheincreaseinthenumberoftrainingimagesforthesyntheticdiscriminantfunctionareanalyzedFinallyconsideringthatthebackgroundmayvaryinrealapplicationswetakesuccessivevideoframesasvariedinputbackgroundsandanalyzethefeasibilityofourproposal. ResultsandDiscussionsResultsindicatethatundertheconsideredimagefilesizeandbackgroundcomplexitytheproposedmethodcanachievenine-channelparallelrecognitionFig8Forcorrectrecognitiontheminimumscalingdownfactoris06Fig11Whenthenumberofrotatedtrainingimagesisincreasedto9inthesyntheticdiscriminantfunctionacorrectrecognitioncanbeguaranteedFig13TherelationbetweentheminimumthresholdofphasetheoptimizationconstraintandthesynthesizedimagenumbersofSDFisobtainedforcalculatingthepreferredphasesTable1FurthermoreacorrectrecognitioncanbeguaranteedwhenthevaluesofhalfthepixelsinthebackgroundhavechangedFig16 ConclusionsHereinanoveldistortion-invariantpatternrecognitionmethodbasedonmultichanneljointtransformcorrelatorisproposedThelocalpeaktocluttermeanisshowntobeunsuitableandweproposeanewoptimizationcriterionknownasthevariationinthecorrelationpeakpositionwhichisfeasibleinthisproposalWeachievenine-channelpatternrecognitionwithin06--10timesofthescalingoftheimagesizeandrotationrangesof0 degrees--30 degrees 70 degrees--100 degrees 140 degrees--170 degrees 210 degrees--240 degrees and280 degrees--310 degrees TheupperlimitofthenumberofsynthesizedtrainingimagesisanalyzedwhichisnineinthisstudyMoreovertheproposedmethodcanmaintainitsperformancewhenthebackgroundisvariedwithinthevaluesofhalfitspixelindicatingrobustnesstobackgroundchangesTherecognitionspeedandaccuracyondistortionofthesystemareconsiderablyimprovedwithourproposalwhichwillbenefitthedevelopmentofpracticalmultichannelopticalcorrelators
引用
收藏
页数:16
相关论文
共 29 条
[1]   Distortion-invariant fringe-adjusted joint transform correlation [J].
Alam, MS ;
Chen, XW ;
Karim, MA .
APPLIED OPTICS, 1997, 36 (29) :7422-7427
[2]   FRINGE-ADJUSTED JOINT TRANSFORM CORRELATION [J].
ALAM, MS ;
KARIM, MA .
APPLIED OPTICS, 1993, 32 (23) :4344-4350
[3]   UNIFIED SYNTHETIC DISCRIMINANT FUNCTION COMPUTATIONAL FORMULATION [J].
CASASENT, D .
APPLIED OPTICS, 1984, 23 (10) :1620-1627
[4]   Advances and Challenges of Optical Neural Networks [J].
Chen Hongwei ;
Yu Zhenming ;
Zhang Tian ;
Zang Yubin ;
Dan Yihang ;
Xu Kun .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (05)
[5]   Implementation of a nonzero-order joint transform correlator using interferometric technique [J].
Cheng, CJ ;
Tu, HY .
OPTICAL REVIEW, 2002, 9 (05) :193-196
[6]   MULTIOBJECT RECOGNITION IN A MULTICHANNEL JOINT-TRANSFORM CORRELATOR [J].
FENG, JH ;
CHIN, GF ;
WU, MX ;
YAN, SH ;
YAN, YB .
OPTICS LETTERS, 1995, 20 (01) :82-84
[7]   Deep learning in photonics: introduction [J].
Gao, Li ;
Chai, Yang ;
Zibar, Darko ;
Yu, Zongfu .
PHOTONICS RESEARCH, 2021, 9 (08) :DLP1-DLP3
[8]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[9]   OPTICAL-PATTERN RECOGNITION USING CIRCULAR HARMONIC EXPANSION [J].
HSU, YN ;
ARSENAULT, HH .
APPLIED OPTICS, 1982, 21 (22) :4016-4019
[10]   JOINT TRANSFORM IMAGE CORRELATION USING A BINARY SPATIAL LIGHT-MODULATOR AT THE FOURIER PLANE [J].
JAVIDI, B ;
KUO, CJ .
APPLIED OPTICS, 1988, 27 (04) :663-665