Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes

被引:27
作者
Grunzinger, Stephen J. [1 ]
Watanabe, Masatoshi [1 ]
Fukagawa, Kiyotaka [1 ]
Kikuchi, Ryohei [1 ]
Tominaga, Yoichi [1 ]
Hayakawa, Teruaki [1 ]
Kakimoto, Masa-aki [1 ]
机构
[1] Tokyo Inst Technol, Dept Organ & Polymer Mat, Meguro Ku, Tokyo 1528552, Japan
关键词
hyperbranched polymer; fuel cell; poly(ether sulfone); spinodal decomposition;
D O I
10.1016/j.jpowsour.2007.09.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hyperbranched poly(ether sulfone) polymers having sulfonyl chloride end-groups is blended at up to 30 w% with linear poly(ether ether ether sulfone)s and a two-phase system is generated via spinodal decomposition upon drying from a DMAc solution. Conversion of the end-groups from sulfonyl chloride to sulfonic acid is accomplished using 16M H2SO4 that is also believed to introduce additional sulfonic acid groups at the interface of the linear polymer. The blend films before and after conversion to sulfonic acid have similar tensile strengths as films composed of solely linear polymer (yield stress >40 MPa and Young's modulus >3 GPa m). These films are designed to test the viability of hyperbranched polymers as fuel cell membranes. Proton conductivities of up to 0.03 S cm(-1) are observed at 80 C and 90% R.H indicating a good potential for use of hyperbranched polymers as a proton conduction material. (c) 2007 Published by Elsevier B.V.
引用
收藏
页码:120 / 126
页数:7
相关论文
共 12 条
  • [1] Composite mesoporous titania nafion-based membranes for direct methanol fuel cell operation at high temperature
    Baglio, V
    Di Blasi, A
    Aricò, AS
    Antonucci, V
    Antonucci, PL
    Trakanprapai, C
    Esposito, V
    Licoccia, S
    Traversa, E
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) : A1373 - A1377
  • [2] Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation
    Choi, Pyoungho
    Jalani, Nikhil H.
    Thampan, Tony M.
    Datta, Ravindra
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (16) : 2183 - 2200
  • [3] Polymer electrolyte membranes for the direct methanol fuel cell: A review
    Deluca, Nicholas W.
    Elabd, Yossef A.
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (16) : 2201 - 2225
  • [4] How good are the Electrodes we use in PEFC? (Understanding Structure vs. Performance of Membrane-Electrode Assemblies)
    Eikerling, M.
    Ioselevich, A. S.
    Kornyshev, A. A.
    [J]. FUEL CELLS, 2004, 4 (03) : 131 - 140
  • [5] Electrolytic conductivity- the hopping mechanism of the proton and beyond
    Gileadi, E.
    Kirowa-Eisner, E.
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (27) : 6003 - 6011
  • [6] Hyperbranched polymers: a promising new class of materials
    Jikei, M
    Kakimoto, M
    [J]. PROGRESS IN POLYMER SCIENCE, 2001, 26 (08) : 1233 - 1285
  • [7] Suppression of the methanol crossover by hydrogels in passively operated flat-pack type DMFCs and its application for the power source of cellular phone
    Kim, Woo-Jae
    Choi, Hoo-Gon
    Lee, Young-Kwan
    Nam, Jae-Do
    Cho, Sung Min
    Chung, Chan-Hwa
    [J]. JOURNAL OF POWER SOURCES, 2006, 163 (01) : 98 - 102
  • [8] Synthesis of hyperbranched aromatic poly(ether sulfone) with sulfonyl chloride terminal groups
    Matsumoto, Kazuya
    Ueda, Mitsuru
    [J]. CHEMISTRY LETTERS, 2006, 35 (10) : 1196 - 1197
  • [9] Design and fabrication of pumpless small direct methanol fuel cells for portable applications
    Shimizu, T
    Momma, T
    Mohamedi, M
    Osaka, T
    Sarangapani, S
    [J]. JOURNAL OF POWER SOURCES, 2004, 137 (02) : 277 - 283
  • [10] Functional fluoropolymers for fuel cell membranes
    Souzy, R
    Ameduri, B
    Boutevin, B
    Gebel, G
    Capron, P
    [J]. SOLID STATE IONICS, 2005, 176 (39-40) : 2839 - 2848