Coke vs graphite as anodes for lithium-ion batteries

被引:35
|
作者
Shi, H [1 ]
机构
[1] Valence Technol, Henderson, NV 89015 USA
关键词
cathode/anode ratio; lithium insertion; lithium-ion cells;
D O I
10.1016/S0378-7753(98)00093-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The respective rapid charge capabilities for graphite and coke for use in lithium-ion electrochemical cells were investigated. Lithium-ion cells with graphite anodes showed a poor ability to be rapidly charged due to the nature of the lithium intercalation process associated with graphite. By contrast, lithium-ion cells with coke anodes showed a much better quick-charge capability compared to that of graphite cells. In this paper, a series of experiments was carried out in order to characterize the difference in quick-charge capability between graphite and coke anode cells. Lithium manganese oxide was used as the cathode material. A mathematical simulation model developed by Newman and Doyle [J. Newman and M. Doyle, J. Electrochem. Sec. 143 (1996) 1890.] was also used in order to explore the change of lithium distribution in the anode as the cells were charged and discharged. The simulation results supported the experimental observation that coke has a superior ability to quickly distribute the lithium into the anode during high-rate charging. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 50 条
  • [1] Evaluation of graphite materials as anodes for lithium-ion batteries
    Cao, F
    Barsukov, IV
    Bang, HJ
    Zaleski, P
    Prakash, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) : 3579 - 3583
  • [2] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [3] Investigation of binder distribution in graphite anodes for lithium-ion batteries
    Mueller, Marcus
    Pfaffmann, Lukas
    Jaiser, Stefan
    Baunach, Michael
    Trouillet, Vanessa
    Scheiba, Frieder
    Scharfer, Philip
    Schabel, Wilhelm
    Bauer, Werner
    JOURNAL OF POWER SOURCES, 2017, 340 : 1 - 5
  • [4] Composite SnO-graphite anodes for lithium-ion batteries
    Lee, JY
    Zhang, RF
    Liu, ZL
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 136 - 143
  • [5] Emerging interfacial chemistry of graphite anodes in lithium-ion batteries
    Yao, Yu-Xing
    Yan, Chong
    Zhang, Qiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (93) : 14570 - 14584
  • [6] Advancements in Graphite Anodes for Lithium-Ion and Sodium-Ion Batteries: A Review
    Xiong, Kai
    Qi, Tianshuang
    Zhang, Xiong
    ELECTROANALYSIS, 2025, 37 (01)
  • [7] Charge-discharge stability of graphite anodes for lithium-ion batteries
    Wang, CS
    Appleby, AJ
    Little, FE
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 497 (1-2) : 33 - 46
  • [8] Glyoxylic acetals as electrolytes for Si/Graphite anodes in lithium-ion batteries
    Gehrlein, Lydia
    Leibing, Christian
    Pfeifer, Kristina
    Jeschull, Fabian
    Balducci, Andrea
    Maibach, Julia
    ELECTROCHIMICA ACTA, 2022, 424
  • [9] Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes
    Matsuo, Y
    Fumita, K
    Fukutsuka, T
    Sugie, Y
    Koyama, H
    Inoue, K
    JOURNAL OF POWER SOURCES, 2003, 119 : 373 - 377
  • [10] Pretreatment of Graphite Anodes with Lithium Sulfate to Improve the Cycle Performance of Lithium-Ion Batteries
    Cui, Xiaoling
    Tang, Fengjuan
    Li, Chunlei
    Zhang, Yu
    Wang, Peng
    Li, Shiyou
    Ye, Xiushen
    ENERGY TECHNOLOGY, 2017, 5 (04) : 549 - 556