Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage

被引:177
作者
Li, T. X. [1 ]
Wu, D. L. [1 ]
He, F. [1 ]
Wang, R. Z. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
关键词
Salt hydrate; Sodium acetate trihydrate; Copper foam; Composite phase change material; Thermal stability; Thermal conductivity; Heat storage density; SODIUM-ACETATE TRIHYDRATE; LATENT-HEAT STORAGE; PERFORMANCE; GRAPHITE; ENHANCEMENT; BEHAVIOR;
D O I
10.1016/j.ijheatmasstransfer.2017.07.056
中图分类号
O414.1 [热力学];
学科分类号
摘要
Latent thermal energy storage based on hydrated salt as phase change material (PCM) has the potential to store large amounts of energy in relatively small volume. However, the problems of phase separation, high supercooling degree and low thermal conductivity are the common drawbacks for hydrated salts and thus critically limit their energy storage applications. In this study, the hydrated salt of sodium acetate trihydrate (SAT) is firstly modified by using additives with the aim of solving the phase separation and supercooling degree problems, and then the copper foam/hydrated salt composite PCM is prepared by using the modified SAT as PCM and copper foam as supporting matrix to overcome the low thermal conductivity. The thermophysical properties and thermal performance of modified SAT and copper foam/SAT composite PCM are tested and analyzed by using Differential Scanning Calorimeter (DSC), HotDisk Thermal Constant Analyzer and a lab-scale experimental setup. The DSC analysis showed that the modified SAT with the additives of 0.5 wt% carboxyl methyl cellulose (CMC) as the thickener and 2.0 wt% disodium hydrogen phosphate dodecahydrate (DHPD) as the nucleator has the best performance to avoid phase separation. The cycled test revealed that modified SAT has good thermal stability and its supercooling degree is lower than 3 degrees C. The experimental results showed that the effective thermal conductivity of copper foam/SAT composite PCM is about 11 times higher than that of pure SAT, and it's volume heat storage energy density is as high as 467 MJ/m(3), and this value is 2.2-2.5 times of that of conventional water tank. The results indicated that the copper foam/SAT composite PCM is a promising phase change material for thermal energy storage due to its good thermal stability, low supercooling degree and high thermal conductivity. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 30 条
[1]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[2]   Thermophysical properties of high porosity metal foams [J].
Bhattacharya, A ;
Calmidi, VV ;
Mahajan, RL .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (05) :1017-1031
[3]   Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material [J].
Cabeza, LF ;
Svensson, G ;
Hiebler, S ;
Mehling, H .
APPLIED THERMAL ENGINEERING, 2003, 23 (13) :1697-1704
[4]   Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 to 58°C temperature range [J].
Cabeza, LF ;
Roca, J ;
Nogués, M ;
Mehling, H ;
Hiebler, S .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2002, 53 (12) :902-907
[5]   Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin [J].
Chen, Zhenqian ;
Gu, Mingwei ;
Peng, Donghua .
APPLIED THERMAL ENGINEERING, 2010, 30 (14-15) :1967-1973
[6]   Thermal energy storage for low and medium temperature applications using phase change materials - A review [J].
da Cunha, Jose Pereira ;
Eames, Philip .
APPLIED ENERGY, 2016, 177 :227-238
[7]   Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures [J].
Dannemand, Mark ;
Dragsted, Janne ;
Fan, Jianhua ;
Johansen, Jakob Berg ;
Kong, Weiqiang ;
Furbo, Simon .
APPLIED ENERGY, 2016, 169 :72-80
[8]   Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite [J].
Dannemand, Mark ;
Johansen, Jakob Berg ;
Furbo, Simon .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 :287-295
[9]  
Dincer I., 2021, Thermal energy storage systems and applications
[10]   Disodium hydrogen phosphate dodecahydrate [J].
Hammick, DL ;
Goadby, HK ;
Booth, H .
JOURNAL OF THE CHEMICAL SOCIETY, 1920, 117 :1589-1592