Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network

被引:0
作者
Li, Xin [1 ]
Liao, Jun [1 ]
Liu, Li [1 ]
机构
[1] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 401331, Peoples R China
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV | 2021年 / 12978卷
基金
中国国家自然科学基金;
关键词
Hand gesture recognition; Skeleton data; Spatio-temporal dependency; Feature consistency; RECOGNITION;
D O I
10.1007/978-3-030-86514-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key challenge in skeleton-based hand gesture recognition is the fact that a gesture can often be performed in several different ways, with each consisting of its own configuration of poses and their spatio-temporal dependencies. This leads us to define a spatio-temporal network model that explicitly characterizes these internal configurations of poses and their local spatio-temporal dependencies. The model introduces a latent vector variable from the coordinates embedding to characterize these unique fine-grained configurations among joints of a particular hand gesture. Furthermore, an attention scorer is devised to exchange joint-pose information in the encoder structure, and as a result, all local spatio-temporal dependencies are globally consistent. Empirical evaluations on two benchmark datasets and one in-house dataset suggest our approach significantly outperforms the state-of-the-art methods.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 25 条
[1]  
Canavan S, 2017, IEEE IMAGE PROC, P2364, DOI 10.1109/ICIP.2017.8296705
[2]  
Chen XH, 2017, IEEE IMAGE PROC, P2881, DOI 10.1109/ICIP.2017.8296809
[3]  
De Smedt Q, 2017, Multimedia Tools and Applications, P1
[4]   Skeleton-based Dynamic hand gesture recognition [J].
De Smedt, Quentin ;
Wannous, Hazem ;
Vandeborre, Jean-Philippe .
PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, :1206-1214
[5]  
Deo, 2016, INT J COMPUT APPL, V150, P5, DOI DOI 10.5120/IJCA2016911498
[6]   Deep Learning for Hand Gesture Recognition on Skeletal Data [J].
Devineau, Guillaume ;
Xi, Wang ;
Moutarde, Fabien ;
Yang, Jie .
PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, :106-113
[7]  
Doe-Hyung Lee, 2010, Proceedings of the 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT 2010), P1092, DOI 10.1109/ICCIT.2010.5711226
[8]  
Feix T., 2009, ROBOT SCI SYST WORKS, V2, P2
[9]   Spatial-Temporal Attention Res-TCN for Skeleton-Based Dynamic Hand Gesture Recognition [J].
Hou, Jingxuan ;
Wang, Guijin ;
Chen, Xinghao ;
Xue, Jing-Hao ;
Zhu, Rui ;
Yang, Huazhong .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 :273-286
[10]  
Hsien-I Lin, 2014, 2014 IEEE International Conference on Automation Science and Engineering (CASE), P1038, DOI 10.1109/CoASE.2014.6899454